1997

# Asymptotics and zero distribution of Padé polynomials associated with the exponential function

## Publication

### Publication

The polynomials $P_n$ and $Q_m$ having degrees $n$ and $m$ respectively, with $P_n$ monic, that solve the approximation problem $$ P_n(z)e^{-z+Q_m(z)={cal Oleft(z^{n+m+1right) $$ will be investigated for their asymptotic behavior, in particular in connection with the distribution of their zeros. The symbol ${cal O$ means that the left-hand side should vanish at the origin at least to the order $n+m+1$. This problem is discussed in great detail in a series of papers by Saff and Varga. In the present paper we show how their results can be obtained by using uniform expansions of integrals in which Airy functions are the main approximants. We give approximations of the zeros of $P_n$ and $Q_m$ in terms of zeros of certain Airy functions, as well of those of the remainder defined by $E_{n,m(z)= P_n(z)e^{-z+Q_m(z)$.

Additional Metadata | |
---|---|

, , , , | |

CWI | |

Modelling, Analysis and Simulation [MAS] | |

Organisation | Computational Dynamics |

Driver, K., & Temme, N. (1997). Asymptotics and zero distribution of Padé polynomials associated with the exponential function. Modelling, Analysis and Simulation [MAS]. CWI. |