Random intersection graphs containing an underlying community structure are a popular choice for modeling real-world networks. Given the group memberships, the classical random intersection graph is obtained by connecting individuals when they share at least one group. We extend this approach and make the communities dynamic by letting them alternate between an active and inactive phase. We analyse the new model, delivering results on degree distribution, local convergence, largest connected component, and maximum group size, paying particular attention to the dynamic description of these properties. We also describe the connection between our model and the bipartite configuration model, which is of independent interest.

, , ,
doi.org/10.1002/rsa.21264
Random Structures & Algorithms
Marie Skłodowska-Curie , Networks
Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands

Milewska, M., van der Hofstad, R., & Zwart, B. (2024). Dynamic random intersection graph: Dynamic local convergence and giant structure. Random Structures & Algorithms, 66(1), 1–38. doi:10.1002/rsa.21264