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ABSTRACT
Random intersection graphs containing an underlying community structure are a popular choice for modeling real-world net-
works. Given the group memberships, the classical random intersection graph is obtained by connecting individuals when they
share at least one group. We extend this approach and make the communities dynamic by letting them alternate between an active
and inactive phase. We analyse the new model, delivering results on degree distribution, local convergence, largest connected com-
ponent, and maximum group size, paying particular attention to the dynamic description of these properties. We also describe the
connection between our model and the bipartite configuration model, which is of independent interest.

1 | Introduction and Main Results

1.1 | Introduction

Networks are present in many areas of everyday life. We dis-
tinguish for instance social networks such as acquaintance net-
works, technological networks such as the worldwide web, or
biological networks such as neural networks (see [1] for an exten-
sive overview). Networks can be investigated in terms of many
aspects, one of them being the existence and shape of local
communities.

Local communities are subnetworks that have, on average, more
connections than the network as a whole. They are crucial com-
ponents of many real-life networks, such as social networks or
the Internet, and they naturally give rise to high clustering (see
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[2, Chapters 7 and 11])—one of the most fiercely investigated net-
work properties, that many systems seem to share.

There are many reasons why communities appear in networks. It
might be because of a set of common features shared by a certain
number of individuals (for example the same nationality) or some
underlying geometry (for example living in the same city). In our
model, we intuitively associate communities with social groups
that people can belong to, such as families, groups of friends,
commuters on the same bus and so forth. However, the model can
also be relevant to other types of networks with similar structures.

Due to their complexity, real-world networks are often modeled
with the help of random graphs. There are many ways of imple-
menting a community structure such as described above. A clas-
sic choice is the random intersection graph (RIG), first introduced
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in [3]. The distinctive feature of intersection graph models is a
double layer. We first establish a bipartite graph, with vertices
on one side and communities on the other. After drawing edges
between the two groups, we obtain a resulting graph by con-
necting two vertices if and only if they both belong to the same
community. This procedure is called the one-mode projection.
Throughout the years, multiple suggestions on how to gener-
ate such bipartite graphs with group memberships appeared [4].
This includes pre-assigning the number of group memberships
to every vertex and then connecting them to groups in a uniform
manner (uniform RIG [5, 6] or generalized RIG [7–11]), generat-
ing group membership via the bipartite configuration model, that
is, assigning half-edges to individuals and groups and then con-
necting them uniformly at random [12–15] or via the bipartite
Norros–Reitu model [16], or performing independent percola-
tion on the complete bipartite graph (binomial RIG [3, 17, 18] or
inhomogeneous RIG [19, 20]).

Our approach shares some similarities with the mentioned inho-
mogeneous RIG since we also assign weight 𝑤

𝑖
to every vertex 𝑖

and the probability that vertex 𝑖 belongs to a certain community
depends on this weight. However, we add a novel dynamic factor
by letting all communities go through active and inactive phases.
We argue that such a modification is relevant for real-world net-
works since many of our regular social contacts are temporary.
For instance, we usually do not spend all our days with our col-
leagues, and we only meet our closest friends a few times a week
for a couple of hours. Other examples of temporary social inter-
actions are concerts or rides with public transport. Our model is
also a natural generalization of static graphs with communities,
as the scenario in which all of the groups are present all the time
is a special case.

The dynamics we implement in our model significantly differ
from the well-investigated dynamic of graphs whose size evolves
in time, such as preferential attachment models [21–24]. The size
of our graph is static, but the connections between individuals
and communities (and hence, in the resulting graph the connec-
tions between individuals themselves) keep evolving. This makes
the model more similar to graphs with dynamic bond percolation
[25, 26], or evolving configuration models [27, 28].

Contribution of the article: In this article, we investigate
degree distribution, local convergence, and behavior of the largest
connected component. A main innovation of our work is the
methodology required to give a dynamic description of a random
graph. We investigate its dynamic local convergence and, in par-
ticular, we introduce the concept of a dynamic largest connected
component from the perspective of a uniformly chosen vertex,
looking at it as a process in time. We then show in which way it is
related to the dynamic local limit. To the best of our knowledge,
the concept of dynamic local limit has only been discussed in the
recent paper [29] where the authors adopt a different approach
and treat a different model. We also develop an auxiliary result
on the relationship between our model and the bipartite con-
figuration model described in [14], that can be of independent
interest (see Appendix A). This result can be thought of as a
bipartite/community version of the relationship between the con-
figuration model and generalized random graph (GRG) (see [22,
Theorem 7.18] and also Section 2 in this article).

Outline of the article: We introduce our model and all nec-
essary assumptions in Section 1.2. We state our main results in
Section 1.3 and provide a discussion in Section 1.4. We describe
the overview of the proofs and state some secondary results in
Section 2. In Section 3, we prove the main results presented in
Section 1.3. For the conceptually straightforward proofs of the
remaining results, we refer the reader to relevant Appendices.

1.2 | Model and Notation

In this section, we intuitively and formally introduce the model
and list some necessary assumptions that will hold throughout
the article.

Vertices and groups: Let [𝑛] = {1, . . . , 𝑛} denote the set of ver-
tices and equip each of these vertices with a unique weight 𝑤

𝑖
,

where 𝒘 = (𝑤
𝑖
)
𝑖∈[𝑛]

are deterministic weights. Further, let [𝑛]
𝑘

denote the set of subsets of size 𝑘 of [𝑛] and let ∪
𝑘≥2[𝑛]𝑘 —a union

of all 𝑘-element subsets of [𝑛] with 𝑘 ≥ 2, 𝑘 ∈ N—denote the set
of groups.

Group dynamics: Every group 𝑎 ∈ ∪
𝑘≥2[𝑛]𝑘 will alternate

between an ON and OFF state independently of all other groups,
following a continuous-time Markov process. The holding times,
that is, the time that a group spends in each of the states, are expo-
nentially distributed with rates

𝜆
𝑎

ON = 1 and 𝜆
𝑎

OFF =
𝑓(|𝑎|)

∏
𝑖∈𝑎

𝑤
𝑖

𝓁|𝑎|−1
𝑛

(1)

respectively, where 𝒘 = (𝑤
𝑖
)
𝑖∈[𝑛]

are certain vertex weights, 𝓁
𝑛
=

∑
𝑖∈[𝑛]

𝑤
𝑖

is the total weight and |𝑎| denotes the size of a group
𝑎 ∈ ∪

𝑘≥2[𝑛]𝑘 . Naturally, 𝑓(|𝑎|) is a function of a group’s size and
can be chosen in a flexible way. The stationary distribution 𝝅 =

[𝜋ON, 𝜋OFF] of these Markov chains is given by

𝜋
𝑎

ON =

𝜆
𝑎

OFF

𝜆
𝑎

ON + 𝜆
𝑎

OFF
=

𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

𝓁|𝑎|−1
𝑛

+ 𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

and

𝜋
𝑎

OFF =

𝜆
𝑎

ON

𝜆
𝑎

ON + 𝜆
𝑎

OFF
=

𝓁|𝑎|−1
𝑛

𝓁|𝑎|−1
𝑛

+ 𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

(2)

We will write “𝑎 is ON at time 𝑡” to denote that a group 𝑎 is in an
ON state at time 𝑡, and abbreviate this to “𝑎 is ON” when the time
is clear from the context. We will also write “𝑎 switches ON” to
denote the event of changing status from being in an OFF state
to being in an ON state, and analogously for reversed roles of ON
and OFF. Moreover, we initialize the group statuses with prob-
abilities corresponding to the stationary distribution, that is, at
time 𝑠 = 0, each group is ON with probability 𝜋

𝑎

ON and OFF with
probability 𝜋

𝑎

OFF, independently of all other groups. To obtain our
dynamic random intersection graph, we draw an edge between all
the vertices in groups that are ON, so that, in the dynamic random
graph, the groups represent dynamic cliques.

Having described the dynamic random intersection graph for
given weights, we next formulate the conditions on the weights
that we will assume throughout the article.

Assumptions on weights: We first define what the empirical
distribution of the weights is:
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Definition 1.1. (Empirical vertex weights distribution).
We define the empirical distribution function of the vertex
weights as

𝐹
𝑛
(𝑥) =

1
𝑛

∑

𝑖∈[𝑛]

1
{𝑤

𝑖
≤𝑥}

, for 𝑥 ≥ 0 (3)

𝐹
𝑛

can be interpreted as the distribution function of the weight of
a vertex chosen from [𝑛] uniformly at random. We denote such
a uniformly chosen vertex by 𝑜

𝑛
and its weight by 𝑊

𝑛
= 𝑤

𝑜
𝑛

. We
impose the following conditions on the vertex weights:

Condition 1.1. (Regularity condition for vertex weight).
There exists a distribution function 𝐹 such that, as 𝑛 → ∞, the
following conditions hold:

a. Weak convergence of vertex weight:

𝑊
𝑛

𝑑

−−→𝑊 (4)

where 𝑊
𝑛

and 𝑊 have distribution functions 𝐹
𝑛

and 𝐹,
respectively. Equivalently, for any 𝑥 for which 𝑥 ↦ 𝐹(𝑥) is
continuous,

lim
𝑛→∞

𝐹
𝑛
(𝑥) = 𝐹(𝑥) (5)

b. Convergence of average vertex weight:

lim
𝑛→∞

E[𝑊
𝑛
] = E[𝑊] (6)

where 𝑊
𝑛

and 𝑊 have distribution functions 𝐹
𝑛

and 𝐹,
respectively. Further, we assume that E[𝑊] > 0.

c. Convergence of second moment of vertex weights:

lim
𝑛→∞

E[𝑊
2
𝑛
] = E[𝑊

2
] < ∞ (7)

Remark 1.1. For the time being, we assume Condition 1.1c.
However, the results treated in this article are also true with-
out it, which is very convenient for applications. We explain how
Condition 1.1c can be lifted in Remark B.3.

Assumptions on the dependence on the group sizes: We take

𝑓(|𝑎|) = |𝑎|!𝑝|𝑎| (8)

where (𝑝
𝑘
)
𝑘≥2 is the probability mass function of the group sizes.

A particularly important case is a power-law group-size distribu-
tion where 𝑝

𝑘
is approximately proportional to 𝑘

−(𝛼+1) for 𝑘 large.
We denote

𝜇 =

∞∑

𝑘=2
𝑘𝑝

𝑘
(9)

and assume 𝜇 < ∞. We also assume that the second moment of
the group-size distribution is finite, so that 𝛼 > 2, that is,

𝜇
(2) =

∞∑

𝑘=2
𝑘

2
𝑝
𝑘
< ∞ (10)

These assumptions are necessary for the graph to be sparse,
that is, the average degree remains uniformly bounded, which

becomes clear after reading Appendix B, where we derive con-
vergence of the average degree and group-size.

The above description fully defines the dynamic random intersec-
tion graph that we will investigate. Below, we will first discuss the
relation between the stationary and dynamic settings, after which
we will give a reformulation of the static and dynamic models in
terms of static and dynamic bipartite graphs. This reformulation
will be essential in the remainder of our proof.

Stationary vs dynamic models: Due to the Markovian nature
of our groups, our models can be examined in two scenarios:
under the stationary distribution, and dynamically, for every time
𝑠 ∈ [0, 𝑇] with 𝑇 fixed, incorporating continuous switching of the
groups between the ON and OFF states. To make it clear which
situation we are referring to, we will call the graph created via the
stationary distribution the stationary or static graph, and we will
refer to the graphs incorporating the group dynamic as dynamic
graphs. Below we define the two scenarios separately and we also
introduce different notation for each of the cases, which we will
use consistently throughout the article.

The static bipartite graph: As mentioned before, there are two
layers in our model: the underlying bipartite structure consist-
ing of the set of vertices on the one hand, together with the set
of groups on the other, and the resulting intersection graph con-
necting vertices that meet in the same group. Below, we will think
of the two layers as corresponding to left- and right-vertices, thus
effectively turning our random intersection graph model into a
bipartite model. This reformulation will prove to be very conve-
nient. We start with defining the first layer corresponding to the
vertices in our random intersection graph. We again split between
the static and dynamic bipartite graphs.

The stationary (static) bipartite GRG, denoted BGRG
𝑛
(𝒘), con-

sists of two bipartite sets of vertices: [𝑛] and ∪
𝑘≥2[𝑛]𝑘 , with

𝑘 ≥ 2. We intuitively think of them as left- and right-vertices
respectively. BGRG

𝑛
(𝒘) is formed by drawing edges between the

left-vertices and right-vertices (groups) that are ON: with prob-
ability 𝜋

𝑎

ON we draw edges between the group 𝑎 ∈ ∪
𝑘≥2[𝑛]𝑘 and

each of its vertices from [𝑛], independently of all other groups.
Analogously, with probability 𝜋

𝑎

OFF, there are no edges between
the group 𝑎 ∈ ∪

𝑘≥2[𝑛]𝑘 and each of its vertices. In the station-
ary (static) scenario, groups do not alternate between ON and
OFF states, that is, they are always either in an ON or in an
OFF state. To differentiate degrees in the underlying and the
resulting graph, we write 𝑑

(𝑙)

𝑖
for the degree of a left-vertex 𝑖 ∈

[𝑛] in BGRG
𝑛
(𝒘) and 𝑑

(𝑟)

𝑎
for the degree of a right-vertex 𝑎 ∈

∪
𝑘≥2[𝑛]𝑘 in BGRG

𝑛
(𝒘). We will often refer to them as the left-

and right-degree, respectively. The left-degrees denote the num-
ber of groups that vertices belong to, while the right-degrees are
the number of left-vertices connected to a particular right-vertex,
that is, the group sizes. Hence,

𝑑
(𝑙)

𝑖
=

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

1
{𝑎 is ON} (11)

where 1
𝐴

denotes the indicator of an event 𝐴, and

𝑑
(𝑟)

𝑎
= |𝑎| ⋅ 1

{𝑎 is ON}
(12)

3 of 38

 10982418, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21264 by C

entrum
 V

oor W
iskunde E

n Info, W
iley O

nline L
ibrary on [14/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



We also quantify the number of all active groups as

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

1
{𝑎 is ON} (13)

As one can see, we allow every collection of 𝑘 vertices, with 𝑘 ∈

[2, 𝑛], to form a group.

The static intersection graph: The second layer—the resulting
static random intersection graph denoted DRIG

𝑛
(𝒘)—has vertex

set [𝑛] = {1, . . . , 𝑛}. It is formed from BGRG
𝑛
(𝒘) by drawing an

edge between two vertices 𝑖, 𝑗 ∈ [𝑛] if they are in at least one ON
group together in BGRG

𝑛
(𝒘). Hence, DRIG

𝑛
(𝒘) is a projection

of BGRG
𝑛
(𝒘), the random multi-graph given by the edge multi-

plicities 𝑋(𝑖, 𝑗))
𝑖,𝑗∈[𝑛]

, such that

𝑋(𝑖, 𝑗) =

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

1
{𝑖 in 𝑎}∩{𝑗 in 𝑎}

1
{𝑎 is ON} (14)

We often refer to the above procedure as “the community pro-
jection” or “the one-mode projection.” Note that in our set-up,
the community projection assigns multiple edges to a pair of ver-
tices when they share more than one ON group in BGRG

𝑛
(𝒘).

However, we remark that in our sparse setting such a situation
is quite unlikely. Let 𝑑

𝑖
denote the degree of a vertex 𝑖 ∈ [𝑛] in

DRIG
𝑛
(𝒘). Then

𝑑
𝑖
=

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

(|𝑎| − 1)1
{𝑎 is ON} (15)

The dynamic bipartite graph process: We denote the dynamic
bipartite GRG by (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇]. It is a dynamic graph pro-
cess in which at time 𝑠 = 0 every group is ON with probability
𝜋

𝑎

ON and OFF with probability 𝜋
𝑎

OFF, independently of all other
groups. For 𝑠 > 0, groups keep switching ON and OFF, according
to the evolution of the continuous-time Markov Chains explained
before. Analogously to the static BGRG

𝑛
(𝒘), the edges are drawn

between a group 𝑎 and all of its vertices whenever the group
is ON, and are removed when the group switches OFF (hence,
for all 𝑠 ∈ [0, 𝑇], BGRG𝑠

𝑛
(𝒘) is equal in distribution to the static

BGRG
𝑛
(𝒘)).

The dynamic intersection graph process: We denote
the dynamic random intersection graph process by
(DRIG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇]. (DRIG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] is obtained from
(BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] similarly to the way in which DRIG
𝑛
(𝒘)

is obtained from BGRG
𝑛
(𝒘): for every 𝑠 ∈ [0, 𝑇], an edge is

drawn between 𝑖, 𝑗 ∈ [𝑛] if they are in at least one ON group
together at time 𝑠 in (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇]. Hence, (DRIG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇]
is again a projection of (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇], the random dynamic
multi-graph given by the edge multiplicities (𝑋

𝑠
(𝑖, 𝑗))

𝑖,𝑗∈[𝑛],𝑠∈[0,𝑇]
such that for each 𝑠 ∈ [0, 𝑇],

𝑋
𝑠
(𝑖, 𝑗) =

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

1
{𝑖 in 𝑎}∩{𝑗 in 𝑎}

1
{a is ON at time 𝑠} (16)

Let 𝑑
𝑖
(𝑠) denote the degree of a vertex 𝑖 ∈ [𝑛] at time 𝑠 in

(DRIG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇]. Then

𝑑
𝑖
(𝑠) =

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

(|𝑎| − 1)1
{𝑎 is ON at time 𝑠} (17)

Uniformly chosen vertices: Throughout the article we often
discuss results with respect to a uniformly chosen vertex. We
denote a uniformly chosen vertex in the bipartite graph by 𝑉

𝑏

𝑛

and in the intersection graph by 𝑜
𝑛
. Note that this notation does

not specify whether we refer to the stationary, dynamic, or any
other type of graph that may appear throughout the article. If
such an indication is needed, then we will make it clear by stat-
ing an appropriate name of the graph, according to the notation
introduced in the previous paragraphs. We also denote the degree
of a uniformly chosen vertex in BGRG

𝑛
(𝒘) by 𝐷

(𝑙)

𝑛
and the degree

of a uniformly chosen ON group by 𝐷
(𝑟)

𝑛
. We denote the degree of

a uniformly chosen vertex in DRIG
𝑛
(𝒘) by 𝐷

𝑛
.

1.3 | Main Results

In this section, we state our main results. We first investigate
the behavior of our model in stationarity. We start with the
description of local convergence, that is, the convergence of
the neighborhood counts. We explain this notion in more detail
in Section 2.2.1. We continue with the description of the largest
connected component. Next, we proceed to analyse the dynamic
situation. We state our results on dynamic local convergence and
dynamic giant membership process. We close by discussing the
dynamics of the largest group that is ON.

1.3.1 | Stationarity

It turns out that under the stationary distribution, and given
appropriate conditions, our underlying graph—BGRG

𝑛
(𝒘)—is

related to the bipartite configuration model BCM, denoted
BCM

𝑛
(𝒅) in this article to accentuate the degree parameter, inves-

tigated for instance in [13, 14, 30]. Hence, it is possible to transfer
the results on the local convergence and the largest connected
component from [13, 14] to our model. The link between the
two models and the transfer of results are explained in detail
in further sections. We now state its most important conse-
quences: the results on the static local limit and largest connected
component.

Static local limit: Similarly, as in BCM
𝑛
(𝒅), the neighborhood

of a uniformly chosen vertex in BGRG
𝑛
(𝒘) resembles a mix-

ture of two branching processes, each of them corresponding
to offspring distributions of left- and right-vertices. Then, the
neighborhood of a uniformly chosen vertex in DRIG

𝑛
(𝒘) resem-

bles a community projection (see (14)) of the left-partition of
this mixture. We summarize these statements in the following
theorem, the limiting objects themselves are explained in detail in
Section 2.2.2:

Theorem 1.1. (Local convergence of BGRGn(w) and
DRIGn(w)). Consider BGRG

𝑛
(𝒘) under Condition 1.1. As

𝑛 → ∞, (BGRG
𝑛
(𝒘), 𝑉

𝑏

𝑛
) converges locally in probability to

(BP
𝛾
, 0), where (BP

𝛾
, 0) is a mixture of two branching processes.

Consequently for DRIG
𝑛
(𝒘) under Condition 1.1, as 𝑛 → ∞,

(DRIG
𝑛
(𝒘), 𝑜

𝑛
) converges locally in probability to (CP, 𝑜), where

(CP, 𝑜) is a random rooted graph.

We prove Theorem 1.1 in Appendix B.4.

4 of 38 Random Structures & Algorithms, 2025
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Static largest connected component: Denote the largest con-
nected cluster (from now on also referred to as “the giant compo-
nent” or shortly “the giant”) in DRIG

𝑛
(𝒘) by𝒞1, and the second

largest connected cluster by 𝒞2 (breaking ties arbitrarily). The
random variables �̃�

(𝑙) and �̃�
(𝑟) are strongly connected to the off-

spring distributions present in the local limit of the underlying
BGRG

𝑛
(𝒘) and are explained in detail in Section 2.2.2. Denote

the probability generating function of a random variable 𝑌 taking
values in N by 𝐺

𝑌
∶ [0, 1] → [0, 1], that is,

𝐺
𝑌
(𝑧) = E[𝑧

𝑌
], 𝑧 ∈ [0, 1] (18)

Furthermore, we write
P

−−→ for convergence in probability. The
following theorem gives a precise condition for the existence of
the giant component in DRIG

𝑛
(𝒘):

Theorem 1.2. (Giant component in DRIG
𝑛
(𝒘)). Con-

sider DRIG
𝑛
(𝒘). There exists 𝜂

𝑙
∈ [0, 1], the smallest solution of the

fixed point equation

𝜂
𝑙
= 𝐺

�̃�
(𝑟) (𝐺

�̃�
(𝑙) (𝜂

𝑙
)) (19)

and 𝜉
𝑙
= 1 − 𝐺

𝐷(𝑙) (𝜂𝑙
) ∈ [0, 1] such that

|𝒞1|

𝑛

P
−−→ 𝜉

𝑙
(20)

Furthermore, 𝜉
𝑙
> 0 exactly when

E[�̃�
(𝑙)
]E[�̃�

(𝑟)
] =

E[𝑊
2
](𝜇

(2) − 𝜇)

E[𝑊]
> 1 (21)

We call the above the supercritical case. In this case, 𝒞1 is unique,
in the sense that |𝒞2|∕𝑛

P
−−→ 0, where 𝒞2 is the second largest

component.

We give a more detailed definition of 𝒞1 and related objects in
Section 2. We prove Theorem 1.2 in Appendix B.5.

1.3.2 | Dynamic Local Convergence

We start with the description of the local limit of our graph in the
dynamic scenario. This concept is rather new in the study of the
local convergence of graphs and to the best of our knowledge it
has not attracted much attention yet (see the discussion later on).

The concept behind dynamic local convergence explained:
To examine the dynamic behavior, we rely on a well-known
characterization of weak convergence of probability measures on
(𝐷([0, 𝑇], 𝑆),) equipped with the Skorokhod 𝐽1 topology, where
𝑆 is a separable metric space, 𝐷([0, 𝑇], 𝑆) is the space of càdlàg
functions 𝑓 ∶ [0, 𝑇] → 𝑆 and  denotes the Borel 𝜎-field gener-
ated by 𝐷([0, 𝑇], 𝑆). Weak convergence of probability measures in
such a space is guaranteed by convergence of finite-dimensional
distributions together with tightness (see [31, Theorem 13.1]),
which naturally implies convergence of random processes with
sample paths in 𝐷([0, 𝑇], 𝑆). Our dynamic graph processes can
be perceived as a stochastic process, from [0, 𝑇] onto the space of
rooted graphs. Hence, in the remaining of the article, whenever

we refer to weak convergence of dynamic graph processes, we
mean weak convergence in 𝐷([0, 𝑇], 𝑆) in the Skorokhod 𝐽1 topol-
ogy, with 𝑆 = (⋆, d

⋆
), where ⋆ is the space of rooted graphs

and d
⋆

is a metric on it. We describe this metric space of rooted
graphs in detail in Section 2. When looking at a rooted dynamic
graph

(
(DRIG𝑠

𝑛
(𝒘), 𝑜

𝑛

)
)
𝑠∈[0,𝑇], we choose the root 𝑜

𝑛
once, uni-

formly at random, and then investigate how the graph around it
evolves in time. This yields one of our main results—the local
convergence of the dynamic intersection graph seen as a stochas-
tic process in time:

Theorem 1.3. (Dynamic local limit of DRIGns(w)).
Under Condition 1.1, as 𝑛 → ∞, the dynamic intersection rooted
graph process

(
(DRIG𝑠

𝑛
(𝒘), 𝑜

𝑛

)
)
𝑠∈[0,𝑇] converges locally weakly in

𝐷([0, 𝑇], 𝑆), with 𝑆 = (⋆, d
⋆

), in the Skorokhod 𝐽1 topology to
((CP𝑠

, 𝑜))
𝑠∈[0,𝑇], where, for every 𝑠 ∈ [0, 𝑇], ((CP𝑠

, 𝑜))
𝑠∈[0,𝑇] is a

stochastic process of random rooted marked graphs.

We prove Theorem 1.3 in Section 3.7.

The limiting dynamic object: Due to the one-mode pro-
jection needed to obtain DRIG𝑠

𝑛
(𝒘), the limiting object is

also rather involved and we fully explain what it is later
(see Section 2.4). Now we only provide an informal descrip-
tion. The limit ((CP𝑠

, 𝑜))
𝑠∈[0,𝑇] depends heavily on the limit of

((BGRG𝑠

𝑛
(𝒘), 𝑜

𝑛
))

𝑠∈[0,𝑇]. In turn, the latter is a dynamic version
of (BP

𝛾
, 0)—the limit of the static BGRG

𝑛
(𝒘). We denote this

dynamic limiting process by ((BP𝑠

𝛾
, 0))

𝑠∈[0,𝑇]. As we have men-
tioned in the text before Theorem 1.1, (BP

𝛾
, 0) is a rooted mix-

ture, with “0” referring to the root, of two marked branching
processes: one corresponding to the offspring distribution of the
left-partition and the other one to the offspring distribution of
the right-partition. Then, at time 𝑠 = 0, ((BP𝑠

𝛾
, 0))

𝑠∈[0,𝑇] is equal
in distribution to (BP

𝛾
, 0). For 𝑠 > 0, ((BP𝑠

𝛾
, 0))

𝑠∈[0,𝑇] continuously
evolves according to the following dynamic: every right-vertex
is removed at rate 1. At the same time, new groups arrive at
the root and the other present left-vertices at rates proportional
to their weights. Each of these groups has size 𝑘 with proba-
bility 𝑘𝑝

𝑘
∕𝜇. These groups get attached with all their current

descendants. ((CP𝑠
, 𝑜))

𝑠∈[0,𝑇] is then a community projection of
the left-partition of ((BP𝑠

𝛾
, 0))

𝑠∈[0,𝑇] just like (DRIG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] is a
community projection of (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] (see (16)).

Remark 1.2. (Dynamic generalized random graphs).
Note that if we only allow groups of size 2, that is, we set

𝑓(|𝑎|) =

{
2, |𝑎| = 2
0, |𝑎| ≠ 2

(22)

(recall (8)), then the stationary edge probability for any two ver-
tices 𝑖, 𝑗 ∈ [𝑛] equals 2𝑤

𝑖
𝑤

𝑗

𝓁
𝑛
+2𝑤

𝑖
𝑤

𝑗

, which corresponds to the edge
probability in the GRG with vertex weights 2𝑤

𝑖
for 𝑖 ∈ [𝑛] (see

Section 2.1 for more information on the static GRG and [29] for
a related dynamic random graph model). Furthermore, if we also
fix 𝑤

𝑖
=

𝑛𝜆

2(𝑛−𝜆)
for all 𝑖 ∈ [𝑛], then the edge probability between

any two vertices equals 𝜆

𝑛
. Hence, in this setting, our dynamic

random graph model transforms into the classical dynamic
Erdős-Rényi random graph, investigated for example in [32, 33].
Therefore Theorem 1.3 implies dynamic local convergence of the
respective dynamic versions of these random graphs as well.
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Dynamic degrees: Knowing the dynamic local limit, we can
extract the information on the degree of a uniformly chosen ver-
tex in DRIG𝑠

𝑛
(𝒘) for every 𝑠 ∈ [0, 𝑇].

Degree in DRIG𝑠

𝑛
(𝒘): Denote the number of active groups of size

𝑘 containing a vertex 𝑖 at time 𝑠 ∈ [0, 𝑇] by 𝐶
𝑠

𝑘
(𝑖). Further, denote

the number of groups of size 𝑘 containing a vertex 𝑖 at time 𝑠 ∈

[0, 𝑇] in the limiting structure ((CP𝑠
, 𝑜))

𝑠∈[0,𝑇] by 𝐶
𝑠

𝑘
(𝑖). Recall that

we denote the degree of a uniformly chosen vertex 𝑜
𝑛

by 𝐷
𝑛
. Thus,

naturally, we denote the dynamic degree of a uniformly chosen
vertex at time 𝑠 by 𝐷

𝑠

𝑛
such that

(𝐷
𝑠

𝑛
)
𝑠∈[0,𝑇] =

(
∞∑

𝑘=2
(𝑘 − 1)𝐶𝑠

𝑘
(𝑜

𝑛
)

)

𝑠∈[0,𝑇]

(23)

Since the degree distribution is a functional of the local limit we
deduce the following convergence of the degree process:

Corollary 1.1. As 𝑛 → ∞,

(𝐷
𝑠

𝑛
)
𝑠∈[0,𝑇]

d
−−→

(
∞∑

𝑘=2
(𝑘 − 1)𝐶

𝑠

𝑘
(𝑜)

)

𝑠∈[0,𝑇]

(24)

in the Skorokhod 𝐽1 topology on 𝐷([0, 𝑇], R
+
). At time 𝑠 = 0,

(𝐶
0
𝑘
(𝑜))

𝑘≥2 are independent, Poisson distributed variables with
parameters (𝑘𝑝

𝑘
𝑊)

𝑘≥2.

1.3.3 | Dynamic Giant Component

Denote the giant component in (DRIG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] at time 𝑠 by𝒞 𝑠

1
and the connected component of the root 𝑜 at time 𝑠 in the lim-
iting structure ((CP𝑠

, 𝑜))
𝑠∈[0,𝑇] (see Theorem 1.3) by 𝒞 𝑠

(𝑜). We
examine the behavior of the process 𝐽

𝑛
(𝑠) = 1

{𝑜𝑛∈𝒞
𝑠

1 }
. From the

behavior of the static giant (see Theorem 1.2), pointwise for every
𝑠, as 𝑛 → ∞,

𝐽
𝑛
(𝑠)

d
−−→1

{|𝒞 𝑠 (𝑜)|=∞}
(25)

However, we want to investigate the behavior of 𝐽
𝑛
(𝑠) as a stochas-

tic process in time. It turns out that this question can be linked to
local neighborhoods in our graph and answered thanks to local
convergence and the “almost local” description of the giant in
Theorem 1.2:

Theorem 1.4. (Dynamic giant component). As 𝑛 → ∞,

(

1
{𝑜

𝑛
∈𝒞 𝑠

1 }

)

𝑠∈[0,𝑇]

d
−−→

(
1

{|𝒞 𝑠 (𝑜)|=∞}

)

𝑠∈[0,𝑇] (26)

in the Skorokhod 𝐽1 topology on 𝐷([0, 𝑇], {0, 1}) with 𝑇 ∈ R
+

.

We provide the proof of Theorem 1.4 in Section 3.8.

1.3.4 | Maximal Group Size

Define
𝐾

{0}
max = max

𝑎∈∪
𝑘≥2[𝑛]𝑘∶𝑎 is ON at time 0

|𝑎| (27)

and 𝐾
(0,𝑇]
max is the maximum group size in the set of groups that

switch ON in the time interval (0, 𝑇], respectively. We define for
every 𝑇 ≥ 0

𝐾
[0,𝑇]
max = max

{

𝐾
{0}
max, 𝐾

(0,𝑇]
max

}

(28)

with 𝐾
{0}
max and 𝐾

(0,𝑇]
max independent, as a consequence of the fact

that different groups arrive independently. We further define
𝐾

(𝑠,𝑇]

max for every 𝑠 ∈ [0, 𝑇) as the maximum group size in the set of
groups that switched ON in time interval (𝑠, 𝑇]. Hence, for every
𝑠 ∈ [0, 𝑇),

𝐾
(0,𝑇]
max = max

{

𝐾
(0,𝑠]
max , 𝐾

(𝑠,𝑇]

max

}

(29)

and 𝐾
(0,𝑠]
max , 𝐾

(𝑠,𝑇]

max are independent. Now define 𝜅
[0,𝑇]
max such that, for

every 𝑇 ≥ 0,

𝜅
[0,𝑇]
max = max

{

𝜅
{0}
max, 𝜅

(0,𝑇]
max

}

(30)

with 𝜅
{0}
max and 𝜅

(0,𝑇]
max independent and

P
(

𝜅
{0}
max ≤ 𝑘

)

= 𝑒
−𝑐

𝑝
𝑘
−𝛼E[𝑊] (31)

and
P
(

𝜅
(0,𝑇]
max ≤ 𝑘

)

= 𝑒
−𝑐

𝑝
𝑇𝑘

−𝛼E[𝑊] (32)

Hence, for every 𝑇 ≥ 0,

P
(

𝜅
[0,𝑇]
max ≤ 𝑘

)

= 𝑒
−𝑐

𝑝
(𝑇+1)𝑘−𝛼E[𝑊] (33)

and the evolution of the whole process is such that for every
𝑠1, 𝑠2, . . . , 𝑠𝑢 such that 0 < 𝑠1 < · · · < 𝑠

𝑢
≤ 𝑇, we have

𝜅
(0,𝑇]
max = max

{

𝜅
(0,𝑠1]
max , 𝜅

(𝑠1 ,𝑠2]
max , . . . , 𝜅

(𝑠
𝑢
,𝑇]

max

}

(34)

where, for non-overlapping time intervals (𝑠1, 𝑠2] and (𝑠3, 𝑠4],
𝜅
(𝑠1 ,𝑠2]
max , 𝜅(𝑠3 ,𝑠4]

max are independent, and for all 𝑖, 𝑗 ∈ N, 𝜅(𝑠
𝑖
,𝑠

𝑗
]

max has the
same distribution as 𝜅

(0,𝑠
𝑗
−𝑠

𝑖
]

max . We show that the largest group size
converges in distribution as a stochastic process to (𝜅

[0,𝑇]
max )

𝑇≥0:

Theorem 1.5. (Maximum group size). If the group-size
distribution is a power law, that is, if

∑

𝑙≥𝑘

𝑝
𝑙
= 𝑐

𝑝
𝑘
−𝛼

(1 + 𝑜(1)), as 𝑘 → ∞ (35)

for some 𝛼 > 3, then, as 𝑛 → ∞,
(

𝐾
[0,𝑇]
max

𝑛1∕𝛼

)

𝑇≥0

d
−−→

(
𝜅
[0,𝑇]
max

)

𝑇≥0 (36)

in the Skorokhod 𝐽1 topology on (𝐷[0, 𝑇], R
+
).

We prove Theorem 1.5 in Section 3.9.

Remark 1.3. Note that one could also investigate a slightly dif-
ferent dynamic process, namely (𝑛

−1∕𝛼
𝐾

𝑠

max)𝑠∈[0,𝑇], where 𝐾
𝑠

max is
the maximal group that is ON at time 𝑠. We conjecture that a
proof of convergence of such a process should be closely related
to the proof of Theorem 1.5 that we present in the next section.
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However, the dynamics of (𝑛
−1∕𝛼

𝐾
𝑠

max)𝑠∈[0,𝑇] are significantly
more involved: when the so far largest group switches OFF, then
the largest ON group becomes the previously second largest one.
Hence, to analyse such a process it would be necessary to keep
track of the large ON groups as a process of infinite length.

1.4 | Discussion

In this section, we comment on the advantages and limitations of
our model and results, and present open problems.

The dynamic nature of our model: An undeniably interesting
feature of our model is the introduction of temporary connec-
tions between vertices. Intuitively, it makes sense that a dynamic
model should describe real-world networks more accurately. The
dynamic we introduce is also interesting purely from the per-
spective of random graph theory. The framework for the dynamic
local limit we provide is an alternative to the one in [29]. However,
the limit itself is a rather complex construction and its interpre-
tation is not very straightforward.

Other work on bipartite graphs with group structure: To
derive results on the static BGRG

𝑛
(𝒘), which later on lead to

results on DRIG
𝑛
(𝒘), we heavily rely on [13, 14]. The authors of

these papers derive statements on local convergence and giant
components in the bipartite configuration model with commu-
nities, which can be transferred to our model by showing an
appropriate relation between the bipartite configuration model
conditioned on simplicity and the bipartite GRG conditioned on
its degree sequence. We provide more details in Section 2.

Other work on dynamic local convergence: To the best of our
knowledge, the only paper that treats dynamic local convergence
is a recent pre-print by Dort and Jacob [29]. The approach of the
authors is different from ours: we are taking a classic approach
by treating the dynamic graph as a stochastic process onto the
space of rooted graphs with a traditional local metric, whereas
they define a metric that incorporates time. Contrary to [29], we
also consider the dynamic giant component.

Group sizes: One of the beneficial features of our model is the
existence of big groups (see Theorem 1.5). Such groups are an
important factor in real-world social networks, which are highly
clustered. We set the model in a way that allows for flexibility in
the choice of the group-size distribution, as one can consider var-
ious (𝑝

𝑘
)
𝑘≥2, not necessarily heavy-tailed ones. We are aware that

many of our proof techniques (see Appendix B) require 𝑝
𝑘

to have
a finite second moment, which might not seem ideal. However,
the finite second moment is needed to obtain a sparse graph, that
is, a graph with a bounded average degree.

Choice of parameters and alternative interpretation: The
model is quite flexible in the choice of parameters, as we do not
determine the weight variables or the group-size distribution and
only keep some general assumptions about them. However, the
model does not allow for the one-to-one transfer of degree distri-
bution from real-world data, as opposed to the bipartite config-
uration model with communities (studied in [14]). Moreover, at
first glance, choosing the stationary distribution as in (2) might
not seem intuitive. However, there is a nice intuitive description

of this model. Our model is very closely connected to a Poisson
process dynamic: take a situation, where we form a new group
according to a Poisson process with intensity 𝓁

𝑛
. When a group

is formed, we choose its size 𝑘 ≥ 2 according to some size distri-
bution (𝑝

𝑘
)
𝑘≥2. (This actually requires the choice of 𝑓(𝑘) = 𝑘!𝑝

𝑘

in (8), which, in turn, gives rise to the factor 2 for the weights in
(22).) Lastly, from all the groups of the chosen size, we pick the
one to appear proportionally to products of weights, that is, with
probability ∏

𝑖∈𝑎
𝑤

𝑖

∑
𝑏∈[𝑛]

𝑘

∏
𝑗∈𝑏

𝑤
𝑗

for all 𝑎 ∈ [𝑛]
𝑘
. It can be shown that our model and the model

we just described yield the same degree sequences and hence,
produce very similar graphs. However, our model conditioned on
its degree sequence has the advantage of being uniform over all
bipartite graphs with such degree sequence, which proves to be a
very useful feature.

Relationship to the bipartite configuration model: An inter-
esting byproduct of our article is a relationship between the
underlying bipartite structure in our model and the bipartite con-
figuration model. More mathematical details regarding this rela-
tionship are stated in the next section and in the Appendix A.
This raises the question of whether the dynamic versions of these
models are also similarly related.

2 | Overview of the Proofs

In this section, we provide the ideas behind the proofs of our
main results. We include shorter and straightforward proofs. We
also state auxiliary results that we think might be of independent
interest.

2.1 | Bipartite Generalized Random Graphs
and Configuration Models are Equivalent

Two of the most popular approaches to modeling real-world net-
works are the GRG and the configuration model. The GRG, was
introduced in 2006 by Britton, Deijfen and Martin-Löf (see [34]).
In this model, each vertex 𝑖 ∈ [𝑛] is given a weight 𝑤

𝑖
and the

probability that there is an edge between vertex 𝑖 and vertex 𝑗 is
equal to

𝑝
𝑖𝑗

=

𝑤
𝑖
𝑤

𝑗

𝓁
𝑛
+ 𝑤

𝑖
𝑤

𝑗

with 𝓁
𝑛
=

∑
𝑖∈[𝑛]

𝑤
𝑖
, just like in our model. Naturally, assigning

edge probabilities according to weights can also be done in a dif-
ferent way. For a more general version see [35], for related models
see the Chung–Lu model (for instance [36]) or the Norros–Reitu
model [37]. For an overview of results on the classic GRG see [22,
Chapter 6].

In contrast, in the configuration model (CM), the degrees of the
vertices are fixed upfront. The concept of the configuration model
originates in the early works of Bollobás (see [38]). Since then,
various configuration models have been proposed but in its most
standard formulation, the configuration model refers to a uni-
form pairing of half-edges, which can be represented in a form

7 of 38
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of a graph by assigning an appropriately determined number of
half-edges to every vertex and then connecting them uniformly
to form edges. A graph obtained in this way conditioned on being
simple is uniform over the space of all simple graphs with a given
degree sequence [2]. Such a model was popularized and inten-
sively studied by Molloy and Reed (see [39, 40]). For an overview
of results for the classic configuration model see [22, Chapter 7].
Again, there are many modifications of the classic configuration
model such as the configuration model with households [41].

Despite their differences, it turns out that the GRG conditioned
on its degree sequence and the configuration model conditioned
on being simple are equal in distribution (see [22, Theorem 7.18]),
which we will (and have in the title of this section) often shortly
refer to as “equivalent.” Also note that the static BGRG

𝑛
(𝒘) intro-

duced by us can be perceived as a bipartite version of the GRG
(hence the name BGRG

𝑛
(𝒘)), where also certain communities

are present. It turns out that this model is accordingly equivalent
to a bipartite configuration model with communities BCM

𝑛
(𝒅),

introduced and studied in [13, 14], under the same conditions
that guarantee equivalence of the classic GRG and the configu-
ration model. More precisely, it turns out that, under such con-
ditions, both BGRG

𝑛
(𝒘) and BCM

𝑛
(𝒅) from [14] are simple uni-

form random graphs (i.e., their distribution is uniform over all
simple graphs with the prescribed degree sequence), and hence
have the same distribution.

This relationship is one of the most important building blocks
of the proofs of our results. Thanks to it, we can transfer
results proved in [13, 14] to our graph. As these auxiliary
statements can be of independent interest, we present them
below, starting with BGRG

𝑛
(𝒘). However, we first introduce

some necessary notation. Note that we can encode the distri-
bution of BGRG

𝑛
(𝒘) via a sequence of indicator random vari-

ables: take 𝑥 = (𝑥
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
—a sequence of 0s and 1s—and

𝑋 = (𝑋
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
—a sequence of independent random variables

describing the existence of particular groups that is,

P(𝑋
𝑎
= 1) = 1 − P(𝑋

𝑎
= 0) = 𝜋

𝑎

ON (37)

Further, denote

𝑑
(𝑙)

𝑖
(𝑋) =

∑

𝑎∈∪
𝑘≥2[𝑛]𝑘∶𝑎∋𝑖

𝑋
𝑎
, and 𝑑

(𝑟)

𝑎
(𝑋) = |𝑎| ⋅ 𝑋

𝑎 (38)

Analogously, we define 𝑑
(𝑙)

𝑖
(𝑥) =

∑
𝑎∈∪

𝑘≥2[𝑛]𝑘∶𝑎∋𝑖
𝑥
𝑎
, 𝑑(𝑟)

𝑎
(𝑥) = |𝑎| ⋅

𝑥
𝑎
. Now let us explain what we mean by conditioning on a degree

sequence in the case of BGRG
𝑛
(𝒘). For the left-degree sequence,

it simply means assigning some 𝑑
(𝑙)

𝑖
for all 𝑖 ∈ [𝑛]. However, the

construction is slightly different for the right-degree sequence.
Note that we want to leave some randomness and match the
setting of the BGRG

𝑛
(𝒘) to the one of the BCM

𝑛
(𝒅), in which

the uniform matching determines which vertices will be in a
group. Hence, when prescribing the right-degrees, we only spec-
ify how many groups of a particular size will be ON, and not
what their elements are: for every 𝑘 ≥ 2, fix 𝑎

𝑘
∈ N and denote

𝐴
𝑘
= #{ON groups of size 𝑘}. Thus, prescribing the right-degree

sequence means that we prescribe that 𝐴
𝑘
= 𝑎

𝑘
for all 𝑘 ≥ 2, that

is, exactly 𝑎
𝑘

groups out of all [𝑛]
𝑘

possible groups of size 𝑘 are
ON. We now explain in detail how to extract such a general degree
sequence describing only how many right-vertices of a particular

degree exist, as recorded in (𝑑
(𝑟)

𝑎
)
𝑎

—the degree sequence spec-
ifying precisely which groups are ON, while not recording the
vertices that are in groups that are ON.

Fix a bipartite graph encoded by 𝑥 = (𝑥
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
, and let 𝑎

𝑘

denote the number of right-vertices of degree 𝑘. To facilitate
future notation and clarify the link between BGRG

𝑛
(𝒘) and

BCM
𝑛
(𝒅), we denote the total number of ON groups as 𝑀 =

∑
𝑘≥2 𝑎𝑘

and we denote the right-vertices by [𝑀] = {1, 2, . . . ,𝑀}.
By convention, fix 𝑎1 = 1 and denote 𝑠

𝑘
=

∑𝑘

𝑙=1𝑎𝑙
. Denote the

right-degree sequence of 𝑥 = (𝑥
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
by

𝑑
(𝑟)

𝑗
(𝑥) = 𝑘 for all 𝑗 ∈ [𝑠𝑘−1, 𝑠𝑘) (39)

Then, we have the following link between the BGRG
𝑛
(𝒘) and

simple uniform bipartite graphs:

Theorem 2.1. (BGRGn(w) conditioned on degree
sequence is uniform). BGRG

𝑛
(𝒘) conditioned on

{𝑑
(𝑙)

𝑖
(𝑋) = 𝑑

(𝑙)

𝑖
∀𝑖 ∈ [𝑛], 𝑑

(𝑟)

𝑗
(𝑋) = 𝑘∀𝑗 ∈ [𝑠𝑘−1, 𝑠𝑘)}, is uni-

form over all simple bipartite graphs with degree sequence
(𝒅

(𝑙)
, 𝒅

(𝑟)
) =

(

(𝑑
(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

)

.

We prove Theorem 2.1 in Appendix A. We now explain how the
BCM

𝑛
(𝒅) is created:

Definition 2.1. (The bipartite configuration model).
Denote the set of left-vertices by [𝑛] = {1, . . . , 𝑛} and the set
of right-vertices by [𝑀] = {1, . . . ,𝑀}. Equip each vertex with
half-edges such that the total number of left half-edges equals the
total number of right half-edges. Considering the half-edges as
tokens to form edges, perform a uniform matching of half-edges
in a manner analogous to the configuration model. Specifically,
in each step, uniformly at random, choose one left half-edge and
one right half-edge, and connect them to form an edge. The bipar-
tite configuration model BCM

𝑛
(𝒅) is then determined by the set

of edges that arise through this procedure.

Note that in the case of the BCM
𝑛
(𝒅), the groups are thought of

as some right-vertices that left-vertices connect to, rather than all
possible combinations of left-vertices, like in our dynamic random
intersection graph. Therefore the number of these groups is fixed
upfront, but their group members are not. It will later become
clear under which conditions the BCM

𝑛
(𝒅) and the BGRG

𝑛
(𝒘)

are equivalent, despite such differences. Having that in mind, an
equivalent result to Theorem 2.1 follows for the BCM

𝑛
(𝒅) condi-

tioned on simplicity:

Theorem 2.2. (BCMn(d) conditioned on being simple
is uniform). For any double degree sequence 𝒅 = (𝒅

(𝑙)
, 𝒅

(𝑟)
) =(

(𝑑
(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

)

, and conditionally on the event {BCM
𝑛
(𝒅)

is a simple graph}, BCM
𝑛
(𝒅) is a uniform simple bipartite graph

with degree sequence 𝒅.

As a natural consequence, BGRG
𝑛
(𝒘) conditioned on its degree

sequences, and BCM
𝑛
(𝒅) conditioned on simplicity, have the

same distribution. We properly state this result in the following
theorem, however, we first note that under some extra assump-
tions, an even stronger connection between the two graphs can
be shown. As this connection plays a crucial role in many of our

8 of 38 Random Structures & Algorithms, 2025
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proofs, we include it in the theorem. The mentioned assumptions
are as follows:

Condition 2.1. (Regularity conditions). Let 𝐺
𝑛

denote a
bipartite graph with the set of left-vertices [𝑛] on one side and the
set of right-vertices [𝑀] on the other side. The random variables
𝐷

(𝑙)

𝑛
and 𝐷

(𝑟)

𝑛
have distribution function 𝐹

(𝑙)

𝑛
and 𝐹

(𝑟)

𝑛
respectively,

given by
𝐹

(𝑙)

𝑛
(𝑥) =

1
𝑛

∑

𝑖∈[𝑛]

1
{𝑑

(𝑙)

𝑖
≤𝑥}

and

𝐹
(𝑟)

𝑛
(𝑥) =

1
𝑛

∑

𝑗∈[𝑀]

1
{𝑑

(𝑟)

𝑗
≤𝑥}

(40)

We will call the following assumptions on these distribution func-
tions the regularity conditions on the degree distributions:

a. There exist random variables 𝐷
(𝑙), 𝐷(𝑟) such that, as 𝑛 → ∞

and for every 𝑙 ≥ 0, 𝑘 ≥ 2,

P(𝐷
(𝑙)

𝑛
= 𝑙|𝐺

𝑛
)

P
−−→P(𝐷

(𝑙)
= 𝑙) and

P(𝐷
(𝑟)

𝑛
= 𝑘|𝐺

𝑛
)

P
−−→P(𝐷

(𝑟)
= 𝑘)

(41)

where (⋅|𝐺
𝑛
) denotes conditioning with respect to a realiza-

tion of a random graph.

b. Moreover, E[𝐷
(𝑙)
] < ∞, E[𝐷

(𝑟)
] < ∞ and, as 𝑛 → ∞,

E[𝐷
(𝑙)

𝑛
|𝐺

𝑛
]

P
−−→E[𝐷

(𝑙)
] and E[𝐷

(𝑟)

𝑛
|𝐺

𝑛
]

P
−−→E[𝐷

(𝑟)
] (42)

Additionally, we put a constraint on the second moment of
the degree random variables:

c. E
[
(𝐷

(𝑙)
)

2]
, E

[
(𝐷

(𝑟)
)

2]
< ∞ and, as 𝑛 → ∞,

E
[
(𝐷

(𝑙)

𝑛
)

2|𝐺
𝑛

] P
−−→E

[
(𝐷

(𝑙)
)

2] and

E
[
(𝐷

(𝑟)

𝑛
)

2|𝐺
𝑛

] P
−−→E

[
(𝐷

(𝑟)
)

2]
(43)

With all the above in mind, the following result relates
BGRG

𝑛
(𝒘) and BCM

𝑛
(𝒅):

Theorem 2.3. (Relation between BGRGn(w) and
BCMn(d)). Let 𝑑

(𝑙)

𝑖
be the degree of left-vertex 𝑖 in BGRG

𝑛
(𝒘),

𝑑
(𝑟)

𝑗
the degree of an ON group 𝑗 in BGRG

𝑛
(𝒘), and let

𝑫 = (𝒅
(𝑙)
, 𝒅

(𝑟)
) = ((𝑑

(𝑙)

𝑖
)
𝑖∈[𝑛]

, ((𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

). Then,

P(BGRG
𝑛
(𝒘) = 𝐺|𝑫 = 𝒅)

= P(BCM
𝑛
(𝒅) = 𝐺|BCM

𝑛
(𝒅) simple)

(44)

Let 
𝑛

be a subset of multi-graphs such that P(BCM
𝑛
(𝒅) ∈


𝑛
)

P
−−→ 1 when 𝒅 satisfies Condition 2.1. Assume that the degree

sequence 𝑫 of BGRG
𝑛
(𝒘) satisfies Condition 2.1. Then also

P(BGRG
𝑛
(𝒘) ∈ 

𝑛
) → 1.

Note that [13, 14] impose Condition 2.1 on the BCM
𝑛
(𝒅) and

all the results therein hold under them. When it comes to
BGRG

𝑛
(𝒘), it can be shown that Condition 1.1, which we have

assumed in Section 1.2, implies Condition 2.1. Therefore all the
results in Section 1.3 are stated under Condition 1.1. The proof of

this implication is rather elementary and hence deferred to the
Appendix A. See also Section 2.2.2.

The above theorem is a bipartite equivalent of the relationship
between the classic generalized random graph GRG

𝑛
(𝒘) and

the configuration model CM
𝑛
(𝒅) (see for instance [22, Theorem

7.18]). The idea behind the proof is also similar. We first show
that BGRG

𝑛
(𝒘) conditioned on the degree sequence is uniform.

After that, we establish that BCM
𝑛
(𝒅) conditioned on simplic-

ity is also uniform. Finally, we use both statements to prove the
desired result. The proofs of the auxiliary steps, as well as of the
final Theorem 2.3, can be found in Appendix A.

2.2 | Static Local Limit and Giant Component

In this section, we investigate the local convergence of our graph
under the stationary distribution. We introduce and describe
in more detail the limiting local objects of the underlying
BGRG

𝑛
(𝒘) and of the resulting DRIG

𝑛
(𝒘). Further on, we exam-

ine the proportion of vertices that are in the giant connected
component. We state a phase transition in the size of the largest
component in terms of the model parameters and give the explicit
criterion under which a unique giant component exists.

2.2.1 | Brief Overview of Local Convergence

Before stating our results we briefly define local convergence in
probability and local marked convergence in probability. Local
convergence was introduced in [42] and a few years later, inde-
pendently, in [43]. It describes the resemblance of the neighbor-
hood of a vertex chosen uniformly at random to a certain limiting
(possibly random) graph. To formalize this resemblance we intro-
duce the notion of neighborhood and isomorphism on graphs:

Definition 2.2. (Rooted graph, rooted isomorphism and
𝑟-neighborhood).

i. We call a pair (𝐺, 𝑜) a rooted graph if 𝐺 is a locally finite,
connected graph and 𝑜 is a distinguished vertex of 𝐺. We
denote the space of rooted graphs by 

⋆
.

ii. We say that the rooted graphs (𝐺1, 𝑜1), (𝐺2, 𝑜2) are rooted
isomorphic if there exists a graph-isomorphism between
𝐺1 and 𝐺2 that maps 𝑜1 to 𝑜2. We denote this by (𝐺1, 𝑜1) ≃

(𝐺2, 𝑜2).

iii. For 𝑟 ∈ N, we define 𝐵
𝑟
(𝐺, 𝑜), the (closed) 𝑟-ball around 𝑜

in 𝐺, or 𝑟-neighborhood of 𝑜 in 𝐺, as the subgraph of 𝐺

spanned by all vertices of graph distance at most 𝑟 from 𝑜.
We think of 𝐵

𝑟
(𝐺, 𝑜) as a rooted graph with root 𝑜.

The notion of graph isomorphism enables defining a metric on
the space of rooted graphs:

Definition 2.3. (Metric on rooted graphs). Let (𝐺1, 𝑜1)

and (𝐺2, 𝑜2) be two rooted connected graphs, and write 𝐵
𝑟
(𝐺

𝑖
, 𝑜

𝑖
)

for the neighborhood of vertex 𝑜
𝑖
∈ 𝑉(𝐺

𝑖
). Let

𝑅
⋆
= sup{𝑟 ∶ 𝐵

𝑟
(𝐺1, 𝑜1) ≃ 𝐵

𝑟
(𝐺2, 𝑜2)} (45)
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and define
d

⋆
((𝐺1, 𝑜1), (𝐺2, 𝑜2)) =

1
𝑅⋆ + 1

(46)

The space 
⋆

of rooted graphs under the metric d

⋆

modulo
equivalences of isomorphic graphs is separable and complete and
thus Polish (for a proof see [44, Appendix A]), which will later
prove useful in the case of dynamic local convergence. We now
define local convergence:

Definition 2.4. (Local convergence in probability). Let
𝐺

𝑛
= ([𝑛], (𝐺

𝑛
)) be a sequence of random graphs, and let 𝑜

𝑛
∼

Unif[[𝑛]], that is, 𝑜
𝑛

is uniformly chosen from [𝑛] independently
of 𝐺

𝑛
. Let (𝐺, 𝑜) denote a random element (with arbitrary distri-

bution) in the set of rooted graphs, which we call a random rooted
graph. We say that (𝐺

𝑛
)
𝑛≥1 converges locally in probability to

(𝐺, 𝑜), if for any fixed rooted graph (𝐻, 𝑜
′
) and 𝑟 ∈ N, as 𝑛 → ∞,

P(𝐵
𝑟
(𝐺

𝑛
, 𝑜

𝑛
) ≃ (𝐻, 𝑜

′
)|𝐺

𝑛
) ∶=

1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

𝑛
,𝑖)≃(𝐻,𝑜′)}

P
−−→P(𝐵

𝑟
(𝐺, 𝑜) ≃ (𝐻, 𝑜

′
))

(47)

where P on the right-hand side refers to the law of (𝐺, 𝑜). We say
that (𝐺, 𝑜) is the local limit in probability of (𝐺

𝑛
)
𝑛≥1.

Thus, intuitively, local convergence is defined as the convergence
of the proportion of vertices whose neighborhoods have some
specified structure. For further reading about local convergence,
see for instance [44, Chapters 2–5] and the references therein for
examples of local limits of various random graph models. Since
we will actually need a more general setting of marked graphs
and their convergence, we now briefly present some of the theory
behind that.

Marked graphs and marked local convergence: Marks allow
us to include additional information about vertices and/or edges
such as directions, colors, and so on. In particular, we use marks
to indicate the belonging of a vertex to a certain partition (of left-
or right-vertices) in the underlying BGRG

𝑛
(𝒘) and to denote the

ON and OFF times of edges in the dynamic graphs, based on the
group activity.

Definition 2.5. (Marked graphs). Let  denote the set of
all locally finite multi-graphs on a countable (finite or count-
ably infinite) vertex set. A marked multi-graph is a multi-graph
𝐺 = ((𝐺), (𝐺)), 𝐺 ∈ , together with a set(𝐺) of marks tak-
ing values in a complete separable metric space Ξ, called the
mark space, and containing the special symbol ∅ which is to be
interpreted as “no mark.”  maps from (𝐺) and (𝐺) to Ξ.
Images in Ξ are called marks. Each edge is given two marks,
one associated with (“at”) each of its endpoints, in particular,
(𝑣) ∈ Ξ for 𝑣 ∈ (𝐺), and for {𝑢, 𝑣} ∈ (𝐺), ({𝑢, 𝑣}, 𝑢) ∈ Ξ

and ({𝑢, 𝑣}, 𝑣) ∈ Ξ. We denote the set of graphs with marks
from the mark space Ξ by (Ξ).

We generalize Definitions 2.2 and 2.3 to the setting of marked
rooted graphs:

Definition 2.6. (Rooted marked graph and
𝑟-neighborhood).

i. We choose a vertex 𝑜 in a marked graph (𝐺,(𝐺)) to be dis-
tinguished as the root. We denote the rooted marked graph
by (𝐺, 𝑜,(𝐺)).
We also denote the set of rooted marked graphs by 

⋆
(Ξ).

We call a random element of 
⋆
(Ξ) (with an arbitrary joint

distribution) a random rooted marked graph.

ii. The (closed) ball𝐵
𝑟
(𝐺, 𝑜,(𝐺)) can be defined analogously

to the unmarked graph ball (Definition 2.2iii), by restricting
the mark function to the subgraph as well.

Definition 2.7. (Metric on marked rooted graphs). Let
d
Ξ

be a metric on the space of marks Ξ. Let

𝑅
⋆
= sup{𝑟 ∶ 𝐵

𝑟
(𝐺1, 𝑜1) ≃ 𝐵

𝑟
(𝐺2, 𝑜2)

and there exists 𝜙 such that

d
Ξ
((1(𝑖),2(𝜙(𝑖))) ≤ 1∕𝑟∀𝑖 ∈ 𝑉(𝐵

𝑟
(𝐺1, 𝑜1))

d
Ξ
(1((𝑖, 𝑗)),2(𝜙(𝑖, 𝑗))) ≤ 1∕𝑟∀{𝑖, 𝑗} ∈ 𝐸(𝐵

𝑟
(𝐺1, 𝑜1))}

(48)

with 𝜙 ∶ 𝑉(𝐵
𝑟
(𝐺1, 𝑜1)) → 𝑉(𝐵

𝑟
(𝐺2, 𝑜2)) running over all rooted

isomorphisms between 𝐵
𝑟
(𝐺1, 𝑜1) and 𝐵

𝑟
(𝐺2, 𝑜2) that map 𝑜1 to

𝑜2. Then define

d

⋆
((𝐺1, 𝑜1,(𝐺1)), (𝐺2, 𝑜2,(𝐺2))) =

1
𝑅⋆ + 1

(49)

This turns 
⋆
(Ξ) into a Polish space, that is, a complete, separable

metric space.

Definition 2.7 puts a metric structure on marked rooted graphs.
With this metric topology in hand, we can simply adapt all
convergence statements to this setting. Hence, we generalize
Equation (47) as follows:

Definition 2.8. (Local convergence in probabil-
ity of marked graphs with continuous marks). Let
(𝐺

𝑛
,(𝐺

𝑛
))

𝑛∈N, with 𝐺
𝑛
= ([𝑛], (𝐺

𝑛
)) and (𝐺

𝑛
,(𝐺

𝑛
)) ∈


⋆
(Ξ), be a sequence of (finite) random marked graphs such that

𝑛 → ∞ and let 𝑜
𝑛
∼ Unif[[𝑛]] independently of (𝐺

𝑛
,(𝐺

𝑛
)). Let

P (⋅|(𝐺𝑛
,(𝐺

𝑛
))) denote conditional probability with respect

to the marked graph (𝑜
𝑛

is the free variable). We say that
(𝐺

𝑛
, 𝑜

𝑛
,(𝐺

𝑛
))

𝑛∈N converges locally in probability to a (possi-
bly) random element (𝐺, 𝑜,(𝐺)) ∈ 

⋆
(Ξ) if for any fixed rooted

graph (𝐻, 𝑜
′
,(𝐻)) and 𝑟 ∈ N, as 𝑛 → ∞,

P
(
d

⋆

(
(𝐺

𝑛
, 𝑜

𝑛
,(𝐺

𝑛
)), (𝐻, 𝑜

′
,(𝐻))

)

≤
1

𝑟 + 1
|(𝐺

𝑛
,(𝐺

𝑛
))

)

∶=
1
𝑛

∑

𝑖∈[𝑛]

1{

d⋆ ((𝐺𝑛
,𝑖,(𝐺

𝑛
)),(𝐻,𝑜′,(𝐻)))≤

1
𝑟+1

}

P
−−→P

(

d

⋆

(
(𝐺, 𝑜,(𝐺)), (𝐻, 𝑜

′
,(𝐻))

)
≤

1
𝑟 + 1

)

(50)

for all continuity points (𝐻, 𝑜
′
,(𝐻)) of the limiting distribu-

tion P. We say that (𝐺, 𝑜,(𝐺)) is the local limit in probability of
(𝐺

𝑛
,(𝐺

𝑛
))

𝑛≥1.
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2.2.2 | Static Local Convergence of the Dynamic
Random Intersection Graph

To prove static local convergence of DRIG
𝑛
(𝒘), we first look at

static local convergence of BGRG
𝑛
(𝒘). The authors of [13, 14]

derive results on the local convergence and the giant compo-
nent of BCM

𝑛
(𝒅) under the assumption that BCM

𝑛
(𝒅) fulfils

Condition 2.1a. From the previous section we know that under
Condition 2.1a,b, results that apply to BCM

𝑛
(𝒅) also apply to

BGRG
𝑛
(𝒘). Hence, it suffices to show that our model under sta-

tionarity and Condition 1.1 fulfils Condition 2.1a,b and argue that
Condition 2.1c is in fact not necessary to obtain local convergence
and the giant component in BGRG

𝑛
(𝒘).

Due to the one-mode projection present in [14] and in our model,
the statements about the resulting intersection graphs, that is, of
RIGC from [14] and DRIG

𝑛
(𝒘), automatically follow from results

shown for BCM
𝑛
(𝒅) and BGRG

𝑛
(𝒘) respectively. Since verifi-

cation of the regularity conditions is quite elementary and the
remaining results follow directly from [13, 14], the proofs of all
static results can be found in Appendix B. Here we only describe
the limiting object and state the theorems.

The static limiting object (BP
𝛾
, 0): We start by introducing

(BP
𝛾
, 0), the local limit in probability of BGRG

𝑛
(𝒘). Naturally,

as we are dealing with two types of vertices—the left and the
right ones—a typical neighborhood in this graph will be differ-
ent depending on the type of the root. However, it is not possi-
ble to determine whether a uniformly chosen root was a left- or
a right-vertex just on the basis of its neighborhood. Hence, we
introduce marks to keep track of different types of vertices. Let
Ξ

𝑏
= {𝑙, 𝑟, ∅} be the set of marks. We mark left-vertices as 𝑙 and

right-vertices as 𝑟. Formally,


𝑏

𝑛
(𝑥) =

⎧
⎪
⎨
⎪
⎩

𝑙 if 𝑥 ∈ [𝑛]

𝑟 if 𝑥 ∈ [𝑛]
𝑘≥2

∅ if 𝑥 is an edge in BGRG
𝑛
(𝒘)

(51)

Now we introduce the limiting object (BP
𝛾
,𝛾

, 0), the local limit
of the BGRG

𝑛
(𝒘) equipped with the mark function 𝑏

𝑛
, while

(BP
𝛾
, 0) is then obtained by ignoring the mark function. Define a

mixing variable 𝛾 as

P(𝛾 = 𝑙) =
1

1 + 𝑀

and P(𝛾 = 𝑟) =
𝑀

1 + 𝑀

(52)

where 𝑀 is the limit in probability of 𝑀
𝑛
∕𝑛. See Theorem B.5

for the calculation of 𝑀. Then, (BP
𝛾
,𝛾

, 0) is a mixture of two
marked ordered BP-trees, (BP

𝑙
,𝑙

, 0) and (BP
𝑟
,𝑟

, 0):

(BP
𝛾
,𝛾

, 0)
𝑑

= 1
{𝛾=𝑙}

(BP
𝑙
,𝑙

, 0) + 1
{𝛾=𝑟}

(BP
𝑟
,𝑟

, 0) (53)

where (BP
𝑙
,𝑙

, 0) describes the neighborhood of a left-vertex
and (BP

𝑟
,𝑟

, 0) of a right-vertex. Hence, (BGRG
𝑛
(𝒘),𝑏

𝑛
, 𝑉

(𝑙)

𝑛
)

converges locally in probability to (BP
𝑙
,𝑙

, 0), and
(BGRG

𝑛
(𝒘),𝑏

𝑛
, 𝑉

(𝑟)

𝑛
) converges locally in probability to

(BP
𝑟
,𝑟

, 0), where 𝑉
(𝑙)

𝑛
and 𝑉

(𝑟)

𝑛
denote vertices chosen uni-

formly from the set of all left- and right-vertices respectively. The
mixing variable 𝛾 can thus be re-interpreted as the random mark
of the root.

Before we proceed, we need to introduce the size-biased and shift
version of a random variable:

Definition 2.9. For an ℕ-valued random variable 𝑋 with
E[𝑋] < ∞, we define its size-biased distribution 𝑋

⋆ and the shift
variable �̃� by their probability mass functions, for all 𝑘 ∈ ℕ,

P(𝑋
⋆
= 𝑘) =

𝑘P(𝑋 = 𝑘)

E[𝑋]
and

P(�̃� = 𝑘) = P(𝑋
⋆
− 1 = 𝑘)

(54)

Now we can continue with the description of the random ordered
marked tree (BP

𝑙
,𝑙

, 0) itself. We consider a discrete-time
branching process where the offspring of any two individuals are
independent. We then give the individuals in even and odd gener-
ations marks 𝑙 and 𝑟, respectively. Generation 0 contains the root
alone and the root’s offspring distribution is 𝐷

(𝑙) (the limit of the
degree of a uniformly chosen left-vertex, see Condition 2.1). In
consecutive generations, the offspring distribution of individuals
marked with 𝑙 will be �̃�

(𝑙) and of individuals marked with 𝑟 will
be �̃�

(𝑟). (BP
𝑟
,𝑟

, 0) is defined analogously with reversed roles of
𝑙 and 𝑟.

Static local limit of DRIG
𝑛
(𝒘): Having specified the local limit

of the underlying BGRG
𝑛
(𝒘), we proceed to the limit of the

resulting graph DRIG
𝑛
(𝒘).

The static limiting object (CP, 𝑜): The limit that we denote by
(CP, 𝑜) is a random rooted graph and the “community projection”
(see (14)) of (BP

𝑙
,𝑙

, 0) in the same way that DRIG
𝑛
(𝒘) is the

“community projection” of the underlying BGRG
𝑛
(𝒘): it extracts

only vertices marked as 𝑙 and builds links between pairs of ver-
tices that are connected to the same vertex with mark 𝑟. Let us
accentuate that even though this limit is not a tree, it relies on the
tree-like structure of the underlying BGRG

𝑛
(𝒘). This constructs

the local limit (CP, 𝑜) of DRIG
𝑛
(𝒘).

2.2.3 | Degree Distribution

The average degree in DRIG
𝑛
(𝒘) is asymptotically a sum of

rescaled Poisson variables whose rates depend on the limiting
weight variable 𝑊 (see Condition 1.1) and the group-size distri-
bution (𝑝

𝑘
)
𝑘
:

Corollary 2.1. (Convergence of degree of a random ver-
tex in DRIG

𝑛
(𝒘)). Let 𝒘 satisfy Condition 1.1. Then,

𝐷
𝑛

𝑑

−−→
∑

𝑙≥2
(𝑙 − 1)𝑋

𝑙 (55)

where 𝑋
𝑙

is a mixed-Poisson variable with mixing distribution
𝑙𝑝

𝑙
𝑊, that is, such that

P(𝑋
𝑙
= 𝑘) = E

[

𝑒
−𝑙𝑝

𝑙
𝑊

(𝑙𝑝
𝑙
𝑊)

𝑘

𝑘!

]

(56)

Corollary 2.1 is a direct consequence of the static local conver-
gence and we can actually prove a stronger result about the
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degree distribution in the static graph. Define

𝑄
(𝑛)

𝑘
=

1
𝑛

∑

𝑖∈[𝑛]

1
{𝑑

𝑖
=𝑘} (57)

Then, the following theorem shows that (𝑄
(𝑛)

𝑘
)
𝑘≥0 converges in

total variation distance:

Theorem 2.4. (Degree sequence in DRIGn(w)). For every
𝜀 > 0, as 𝑛 → ∞,

P

(
∞∑

𝑘=0
|𝑄

(𝑛)

𝑘
− 𝑞

𝑘
| > 𝜀

)

→ 0 (58)

where 𝑞
𝑘
= P

(∑
𝑙≥2(𝑙 − 1)𝑋

𝑙
= 𝑘

)
with (𝑋

𝑙
)
𝑙≥2 independent

mixed-Poisson variables with mixing distribution 𝑙𝑝
𝑙
𝑊 as in

Corollary 2.1.

Theorem 2.4 is proven in Appendix B.3.

We next investigate the sparsity of our model by investigating the
average degree:

Theorem 2.5. (Convergence of average degree in
DRIGn(w)). As 𝑛 → ∞,

E[𝐷
𝑛
|𝐺

𝑛
]

P
−−→ (𝜇

(2) − 𝜇)E[𝑊] (59)

The proof of this result (see Appendix B.3) shows why Conditions
9 and 10 are necessary for the sparsity of our model.

2.2.4 | Static Giant Component

Since real-world networks tend to be highly connected and a large
fraction of individuals often lies in a single connected component,
it is useful to study the behavior of this component. We denote the
cluster or connected component of a vertex 𝑖 ∈ [𝑛] in the graph
𝐺 = ([𝑛], (𝐺)) by 𝒞 (𝑖). We denote the graph distance in 𝐺, that
is, the minimal number of edges in a path linking 𝑖 and 𝑗, by
dist

𝐺
(𝑖, 𝑗). We define connected components and the giant in a

graph as follows:

Definition 2.10. (Giant connected component). Denote

𝒞 (𝑖) = {𝑗 ∈ [𝑛] ∶ dist
𝐺
(𝑖, 𝑗) < ∞} (60)

Let 𝒞1 denote the largest connected component (also referred to
as “the giant component” or shortly “the giant”), that is, let 𝒞1
satisfy

|𝒞1| = max
𝑖∈[𝑛]

|𝒞 (𝑖)| (61)

where |𝒞 (𝑖)| denotes the number of vertices in𝒞 (𝑖) and we break
ties arbitrarily.

Another popular question is the existence of a component con-
taining a linear proportion of vertices—the so-called giant com-
ponent problem. It was first studied by Erdős and Rényi [45]
and has since been investigated on multiple other models (for

instance the Chung–Lu model [46, 47], or configuration model
[39, 40, 48, 49]).

Due to the structure of intersection graphs, the giant component
exists when it exists in the underlying bipartite graph. Hence,
the results on the giant component in DRIG

𝑛
(𝒘) follow from

the results on the giant component in BGRG
𝑛
(𝒘). Similarly, as

in the case of local convergence, thanks to the link between our
model under stationarity and the BCM

𝑛
(𝒅) and the fact that the

regularity conditions we impose on the weights variables imply
regularity conditions on degrees in BGRG

𝑛
(𝒘), we are allowed to

transfer the statements on the giant component for BCM
𝑛
(𝒅) and

RIGC, proven in [13]. We again state the results and prove them
in more detail in Appendix B.5.

Static giant component in the BGRG
𝑛
(𝒘): We start with the

bipartite graph. Denote the giant component in BGRG
𝑛
(𝒘) by

𝒞1,𝑏. This object is studied in the next theorem:

Theorem 2.6. (Giant component in BGRG
𝑛
(𝒘)). Under

the supercriticality condition E[�̃�
(𝑙)
]E[�̃�

(𝑟)
] > 1, as 𝑛 → ∞,

|𝒞1,𝑏 ∩ [𝑛]|

𝑛

P
−−→ 𝜉

𝑙
(62)

where 𝜉
𝑙
= 1 − 𝐺

𝐷(𝑙) (𝜂𝑙
) ∈ [0, 1] and 𝜂

𝑙
∈ [0, 1] is the smallest solu-

tion of the fixed point equation

𝜂
𝑙
= 𝐺

�̃�
(𝑟) (𝐺

�̃�
(𝑙) (𝜂

𝑙
)) (63)

In this case, 𝒞1,𝑏 is unique in the sense that |𝒞2,𝑏|∕𝑛
P

−−→ 0, where
𝒞2,𝑏 is the second largest component.

We prove Theorem 2.6 in Appendix B.5.

Static giant component in the DRIG
𝑛
(𝒘): The statement on

the giant in DRIG
𝑛
(𝒘) follows immediately. See Theorem 1.2.

Remark 2.1. The fact that the fixed point equation (19) shows
up here can be intuitively explained as follows: For a ver-
tex to be in the giant component, its local neighborhood has
to survive. In the results on the local convergence we have
shown that local neighborhoods are locally tree-like and are well
approximated by branching processes with offspring distribu-
tions �̃�

(𝑙) and �̃�
(𝑟). Hence, the fixed point equation follows from

the general theory of branching processes and their extinction
probability.

2.3 | The Union Graph

Having shown multiple results for the static situation, we proceed
to the dynamic setting. In order to describe the graph dynamically
for every time point 𝑠, it is helpful to first look collectively at every-
thing that happens during a time interval [0, 𝑇], for 𝑇 fixed. For
that reason, we create a union graph BGRG[0,𝑇]

𝑛
(𝒘) (and accord-

ingly, a resulting DRIG[0,𝑇]
𝑛

(𝒘)) which includes any group that
was ON at time 𝑇 = 0, but also all the groups that ever switched
ON within the time interval (0, 𝑇].

12 of 38 Random Structures & Algorithms, 2025
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Group probabilities in BGRG[0,𝑇]
𝑛

(𝒘): Note that

P(𝑎 ON within [0, 𝑇])

= 𝜋
𝑎

ON + 𝜋
𝑎

OFFP(𝑎 switches ON within (0, 𝑇])

= 𝜋
𝑎

ON + 𝜋
𝑎

OFF (1 − P(𝑎 never ON within (0, 𝑇]))

= 𝜋
𝑎

ON + 𝜋
𝑎

OFF
(
1 − 𝑒

−𝑇𝜆
𝑎

OFF
)
∧ 1

=
𝑓(|𝑎|)

∏
𝑖∈𝑎

𝑤
𝑖

𝓁|𝑎|−1
𝑛

+ 𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

+
𝓁|𝑎|−1
𝑛

𝓁|𝑎|−1
𝑛

+ 𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

×

(

1 − 𝑒

−𝑇
𝑓(|𝑎|)

∏
𝑖∈𝑎 𝑤𝑖

𝓁|𝑎|−1
𝑛

)

∧ 1 ≤ 𝜋
𝑎

ON(1 + 𝑇) ∧ 1

(64)

using the fact that 1 − 𝑒
−𝑥 ≤ 𝑥. Hence, we see that even though

the group probability in the union graph is somewhat compli-
cated, it can be bounded from above by 𝜋

𝑎

ON(1 + 𝑇), which is sim-
ilar to the group probability in the static graph. Thus, instead of
deriving convergence results directly for BGRG[0,𝑇]

𝑛
(𝒘), it is more

convenient to couple it with a graph that is closer to the static
graph.

2.3.1 | The Rescaled Bipartite Graph

Remember that since BGRG
𝑛
(𝒘) is uniform and, assuming

Condition 1.1, it fulfils the required degree regularity condi-
tions, we can relate it to the BCM

𝑛
(𝒅) model from [13, 14] and

hence deduce its local convergence. It is not difficult to see
that a graph with group ON probability P(𝑎 is ON) = 𝜋

𝑎

ON(1 +

𝑇) would also satisfy equivalent regularity conditions. How-
ever, a graph with P(𝑎 is ON) = 𝜋

𝑎

ON(1 + 𝑇), P(𝑎 is OFF) = 1 −

𝜋
𝑎

ON(1 + 𝑇) will not exactly be uniform (which is easy to see
after inspecting the proofs of Proposition A.1 and Theorem 2.1 in
Appendix A). Therefore, we define a graph with group probabil-
ity also closely related to 𝜋

𝑎

ON(1 + 𝑇), but with a more convenient
structure:

Definition of BGRG(𝑇)

𝑛
(𝒘): We introduce BGRG(𝑇)

𝑛
(𝒘), a graph

similar to the static BGRG
𝑛
(𝒘) but with slightly modified group

probabilities: we fix the holding times to be exponentially dis-
tributed with rates

𝜆
𝑎

ON = 1 and 𝜆
𝑎

OFF =
(1 + 𝑇)𝑓(|𝑎|)

∏
𝑖∈𝑎

𝑤
𝑖

𝓁|𝑎|−1
𝑛

(65)

Hence, the new stationary distribution 𝜋
(𝑇)

= [𝜋
(𝑇)

ON, 𝜋
(𝑇)

OFF] is
given by

𝜋
𝑎,(𝑇)

ON =
(1 + 𝑇)𝑓(|𝑎|)

∏
𝑖∈𝑎

𝑤
𝑖

𝓁|𝑎|−1 + (1 + 𝑇)𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

and

𝜋
𝑎,(𝑇)

OFF =
𝓁|𝑎|−1
𝑛

𝓁|𝑎|−1
𝑛

+ (1 + 𝑇)𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

(66)

for every 𝑎 ∈ ∪
𝑘≥2[𝑛]𝑘 . We again impose Condition 1.1 on the

weights 𝒘 = (𝑤
𝑖
)
𝑖∈[𝑛]

and assume finite first and second moment
of the group-size distribution (𝑝

𝑘
)
𝑘≥2, taking 𝑓(𝑘) = 𝑘!𝑝

𝑘
(see (9)

and (10)). It turns out (see Remark B.4) that BGRG(𝑇)

𝑛
(𝒘) con-

ditioned on its degree sequence is uniform and that its degree
sequences fulfil the same regularity conditions as the degree

sequences of BGRG
𝑛
(𝒘). The limiting variables of left- and

right-degrees are also analogous to the limiting degree variables
in BGRG

𝑛
(𝒘), with Poisson parameters rescaled by the factor

𝑇 + 1 (for an explicit statement of the regularity conditions, see
Remark B.4). Hence, BGRG(𝑇)

𝑛
(𝒘) is just like BGRG

𝑛
(𝒘) with

slightly bigger group probabilities and thus, it asymptotically
behaves in the same way. To draw the same conclusion about
the union graph BGRG[0,𝑇]

𝑛
(𝒘), it then suffices to show that it is

asymptotically equivalent to BGRG(𝑇)

𝑛
(𝒘), which we explain fur-

ther in the next section.

2.3.2 | Asymptotic Equivalence of Multi-Graphs

In this section, we briefly introduce the theory of asymp-
totic equivalence of graph sequences. In particular, we extend
the condition determining when two inhomogeneous random
graphs are asymptotically equivalent to the case of random
multi-graphs. We start by introducing the notion of asymptotic
equivalence for general random variables:

Definition 2.11. (Asymptotic equivalence of random
variables). Let (

𝑛
,

𝑛
)
𝑛≥1 be a sequence of arbitrary mea-

surable spaces. Let (𝑋
𝑛
) and (𝑌

𝑛
) be two sequences of random

variables with values in 
𝑛
. The sequence (𝑋

𝑛
)
𝑛

is asymptoti-
cally equivalent to (𝑌

𝑛
)
𝑛

when for every sequence of measurable
sets 𝐹

𝑛
(i.e., 𝐹

𝑛
∈ 

𝑛
), we have P(𝑋

𝑛
∈ 𝐹

𝑛
) − P(𝑌

𝑛
∈ 𝐹

𝑛
) → 0

as 𝑛 → ∞.

The definition of asymptotic equivalence is naturally extended
to graphs by calling two graphs asymptotically equivalent, when
the sequences of Bernoulli random variables that uniquely
determine their edge statuses are asymptotically equivalent. We
broaden this notion to bipartite multi-graphs whose distribu-
tion can also be uniquely encoded by a sequence of Bernoulli

random variables from {0, 1}
∑

𝑘≥2

(
𝑛

𝑘

)

, this time corresponding
to group statuses (multi-edge statuses). Analogously, we call
such multi-graphs asymptotically equivalent if these Bernoulli
sequences are asymptotically equivalent as in Definition 2.11. In
all examples below, the Bernoulli variables involved are indepen-
dent. In the following theorem, we give a criterion guaranteeing
that two bipartite multigraph sequences are asymptotically equiv-
alent. The section applies results by [50]. We denote (𝜋

𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘

for the group probabilities in some bipartite graph BRG
𝑛
(𝝅) for

which the probability that a group 𝑎 is present equals 𝜋
𝑎

and all
groups exist independently of each other.

Theorem 2.7. (Asymptotic equivalence of bipartite
multi-graphs). Let BRG

𝑛
(𝝅) and BRG

𝑛
(�̂�) be two random

bipartite graphs with group probabilities 𝝅 = (𝜋
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
and

�̂� = (�̂�
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
respectively. If there exists 𝜀 > 0 such that

max
𝑎∈∪

𝑘≥2[𝑛]𝑘
�̂�

𝑎
≤ 1 − 𝜀, then BRG

𝑛
(𝝅) and BRG

𝑛
(�̂�) are asymp-

totically equivalent if

lim
𝑛→∞

∑

𝑎∈∪
𝑘≥2[𝑛]𝑘

(𝜋
𝑎
− �̂�

𝑎
)

2

�̂�
𝑎

= 0 (67)

In particular, BRG
𝑛
(𝝅) and BRG

𝑛
(�̂�) are asymptotically

equivalent when they can be coupled in such a way that
P(BRG

𝑛
(𝝅) ≠ BRG

𝑛
(�̂�)) = 𝑜(1). Indeed, there is a strong
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relationship between the asymptotic equivalence and coupling,
which becomes obvious after the proof. We prove Theorem 2.7 in
Section 3.1.

Having explained what is meant by asymptotic equivalence, we
state our main equivalence result:

Theorem 2.8. (Asymptotic equivalence of BGRGn[0,T]
(w) and BGRG n(T )(w)). Under Condition 1.1, the ran-
dom graphs BGRG[0,𝑇]

𝑛
(𝒘) and BGRG(𝑇)

𝑛
(𝒘) are asymptotically

equivalent.

We prove Theorem 2.8 in Section 3.2. Thanks to the equivalence,
all results that we derive for BGRG(𝑇)

𝑛
(𝒘) automatically hold for

BGRG[0,𝑇]
𝑛

(𝒘).

2.3.3 | Local Limit of Union Graphs

We now state the results on the local convergence of the union
graph, starting with the bipartite one:

Local limit of BGRG[0,𝑇]
𝑛

(𝒘): Following the appropriate state-
ment for the rescaled graph BGRG(𝑇)

𝑛
(𝒘), we conclude that the

bipartite union graph fulfils the equivalent of Condition 2.1a.
Moreover, the limiting variables of left- and right-degrees in
BGRG[0,𝑇]

𝑛
(𝒘), denoted further on as �̃�

(𝑙),[0,𝑇] and �̃�
(𝑟),[0,𝑇] respec-

tively, are just the limiting variables of left- and right-degrees in
BGRG

𝑛
(𝒘) with Poisson parameters and proportion of groups of

size 𝑘 rescaled by the factor𝑇 + 1. Hence, the union graph asymp-
totically behaves in the same way as the stationary graph with
accordingly larger edge probabilities.

The limiting object (BP[0,𝑇]
𝛾

, 𝑜): The local limit of BGRG[0,𝑇]
𝑛

(𝒘)

is again a mixture of two branching processes corresponding to
two types of vertices and everything is analogous to the limit of
BGRG

𝑛
(𝒘), with 𝐷

(𝑙),[0,𝑇] and 𝐷
(𝑟),[0,𝑇] taking the place of 𝐷(𝑙) and

𝐷
(𝑟) as the offspring distribution of the root, �̃�

(𝑙),[0,𝑇] replacing
�̃�

(𝑙) as the offspring distribution of the rest of the 𝑙-vertices and
�̃�

(𝑟),[0,𝑇] taking the place of �̃�
(𝑟) as the offspring distribution of

the rest of the 𝑟-vertices.

Local limit of DRIG[0,𝑇]
𝑛

(𝒘): The local limit (CP[0,𝑇]
, 𝑜) of

DRIG[0,𝑇]
𝑛

(𝒘) can be constructed from the left-partition of the
local limit of BGRG[0,𝑇]

𝑛
(𝒘) via the appropriate community pro-

jection in exactly the same way as the local limit of DRIG
𝑛
(𝒘) was

constructed via the community projection from the local limit of
BGRG

𝑛
(𝒘) (see the previous section):

Theorem 2.9. (Local limit of BGRGn[0,T ](w) and
DRIG n[0,T ](w)). Assume that Condition 1.1 holds. Then
(
BGRG[0,𝑇]

𝑛
(𝒘), 𝑉

𝑏

𝑛

)
converges locally in probability to (BP[0,𝑇]

𝛾
, 𝑜),

where (BP[0,𝑇]
𝛾

, 𝑜) is described above. Also
(
DRIG[0,𝑇]

𝑛
(𝒘), 𝑜

𝑛

)
con-

verges locally in probability to (CP[0,𝑇]
, 𝑜), where (CP[0,𝑇]

, 𝑜) is
described above.

We prove Theorem 2.9 in Section 3.3. From this analysis we
also obtain results on the degrees 𝐷

[0,𝑇]
𝑛

and its expectation
as in Corollary 2.1 and Theorem 2.4. We refrain from stating
those.

2.3.4 | Marked Union Graph

Marks in BGRG[0,𝑇]
𝑛

(𝒘): We remark that the union graph is
already dynamic, as it takes dynamically appearing groups into
account. However, it does not equal the actual dynamic graph,
as it does not take into account whether certain groups were
active at the same time. Therefore it might show interactions
that were never made at any time in [0, 𝑇]. Yet, it enables track-
ing the actual interactions between vertices. For this purpose, we
add marks along the edges of BGRG[0,𝑇]

𝑛
(𝒘) indicating the (first)

switch ON and switch OFF times within [0, 𝑇]. These times are
determined by the activity of the groups responsible for the cre-
ation of these edges. We first mark the groups (right-vertices):
write 𝜎

𝑎

ON to denote the first time that a group 𝑎 switches ON
within [0, 𝑇], 𝜎

𝑎

OFF to denote the first time it switches OFF in
(0, 𝑇] and 𝜎

𝑎

ON = 0 if 𝑎 is ON at time 0. If 𝜎𝑎

ON > 𝑇 no time marks
are given, and if 𝜎𝑎

ON ≤ 𝑇, 𝜎
𝑎

OFF > 𝑇, only 𝜎
𝑎

ON is assigned. Hence,
the new mark-set is Ξ𝑑

= {𝑙, 𝑟, 𝑟 × [0,∞), 𝑟 × [0,∞) × (0,∞)}. We
then transfer the marks to the edges, that is, every edge in
BGRG[0,𝑇]

𝑛
(𝒘) copies the marks of the right-vertex it is adjacent

to. The left-vertices are still only marked with “𝑙.”

We define the distance metric d
Ξ

on the above set of marks in
BGRG[0,𝑇]

𝑛
(𝒘) in the following way: For any 𝑠, 𝑠1, 𝑠2, 𝑡, 𝑡, 𝑡1, 𝑡2 ∈

[0,∞),

d
Ξ
(𝑙, 𝑟 × · · · ) = d

Ξ
(𝑟, (𝑟, 𝑠)) = d

Ξ
(𝑟, (𝑟, 𝑠, 𝑢))

= d
Ξ
((𝑟, 𝑠), (𝑟, 𝑠, 𝑡)) = 𝑇

d
Ξ
((𝑟, 𝑠), (𝑟, 𝑡)) = |𝑠 − 𝑡|

d
Ξ
((𝑟, 𝑠1, 𝑡1), (𝑟, 𝑠2, 𝑡2)) = |𝑠1 − 𝑠2| ∨ |𝑡1 − 𝑡2|

(68)

The above marks are also well-behaved: the marks of group 𝑎 that
is ON in the union graph are independent for different 𝑎 and they
converge in distribution with respect to the probability measure
of the union graph to some limiting marks (𝑡ON, 𝑡OFF), whose dis-
tribution is described in the following lemma:

Lemma 2.1. (Convergence of the law of the edge
marks.). Let 𝐹

ON,OFF
𝑛|𝑇

denote the joint law of
(
𝜎
𝑎

ON, 𝜎
𝑎

OFF
)

for
𝑎 ∈ ∪

𝑘≥2[𝑛]𝑘 , conditioned on the fact that such 𝑎 ∈ ∪
𝑘≥2[𝑛]𝑘 is ON

during [0, 𝑇], that is,

𝐹
ON,OFF
𝑛|𝑇

(𝑠1, 𝑠2) = P(𝜎
𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF

≤ 𝑠2|ON at some point in [0, 𝑇])
(69)

where 𝑠1 ∈ [0, 𝑇] and 𝑠2 ≥ 𝑠1. Then, as 𝑛 → ∞,

𝐹
ON,OFF
𝑛|𝑇

(𝑠1, 𝑠2) → 𝐹
ON,OFF
𝑇

(𝑠1, 𝑠2) (70)

with
𝐹

ON,OFF
𝑇

(𝑠1, 𝑠2) =
1−𝑒

−𝑠2+𝑠1 +𝑠1
1+𝑇

(71)

Consequently,
(
𝜎
𝑎

ON, 𝜎
𝑎

OFF
) d
−−→ (𝑡ON, 𝑡OFF) (72)

where (𝑡ON, 𝑡OFF) has joint cumulative distribution function
𝐹

ON,OFF
𝑇

.

We prove Lemma 2.1 in Section 3.4.
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Marks in DRIG[0,𝑇]
𝑛

(𝒘): We have just described the assignment
of marks to the underlying bipartite union graph BGRG[0,𝑇]

𝑛
(𝒘).

We now explain how to do it for DRIG[0,𝑇]
𝑛

(𝒘). Recall that
the left-vertices in BGRG[0,𝑇]

𝑛
(𝒘) were only labeled as “𝑙,” that

is, they did not contain information about the time activity.
However, DRIG[0,𝑇]

𝑛
(𝒘)—the community projection (see (14)) of

BGRG[0,𝑇]
𝑛

(𝒘)—consists of left-vertices only. Hence, we need to
transfer the marks accordingly when performing the commu-
nity projection: if 𝑘 left-vertices 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ [𝑛], 𝑘 ∈ N are con-
nected to some right-vertex â with marks (𝜎

â
ON, 𝜎

â
OFF), (which are

also inherited by edges connecting each of 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ [𝑛] with
â, according to the description at the beginning of this section),
then every two-element combination of 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ [𝑛] is con-
nected by an edge with marks (𝜎

â
ON, 𝜎

â
OFF) in DRIG[0,𝑇]

𝑛
(𝒘).

Whether we choose to later transfer these marks to 𝑖1, 𝑖2, . . . , 𝑖𝑘
as well is irrelevant. Recall our argumentation that in the
setting that we have chosen, it is unlikely for two vertices
to meet in more than one group (see paragraph “The static
intersection graph” in Section 1.3). However, in the rare case
that the same vertices are connected to two or more distinct
groups in BGRG[0,𝑇]

𝑛
(𝒘), the mark of the edge connecting these

vertices in DRIG[0,𝑇]
𝑛

(𝒘) appends all marks from the bipar-
tite edges. This means the edge in the intersection graph will
carry the combined

⋃
â(𝜎

â
ON, 𝜎

â
OFF) marks, where the union is

taken over each group â connecting the given vertices in the
bipartite graph.

The limit of the marked union graphs: Lemma 2.1 is cru-
cial in showing the dynamic local convergence. Thanks to the
facts that edge marks are independent, as all the groups switch
ON and OFF independently of each other, and that they con-
verge in distribution to limiting marks (𝑡ON, 𝑡OFF) (as shown in
Lemma 2.1) we know that they converge jointly for all groups and
all 𝑠 ∈ [0, 𝑇]. Hence, the marked bipartite union graph will con-
verge to the marked limit of BGRG[0,𝑇]

𝑛
(𝒘), which will imply that

also the marked intersection union graph converges:

Theorem 2.10. (Local limit of marked BGRGn[0,T](w)
and DRIG n[0,T ](w)). Under Condition 1.1, as
𝑛 → ∞,

(
BGRG[0,𝑇]

𝑛
(𝒘), 𝑉

𝑏

𝑛
, ((𝜎

𝑎

ON, 𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇]
)

con-
verges locally in probability to (BP[0,𝑇]

𝛾
, 𝑜, (𝑡ON, 𝑡OFF)), where

(

BP[0,𝑇]
𝛾

, 𝑜, (𝑡ON, 𝑡OFF)
)

is a marked version of (BP[0,𝑇]
𝛾

, 𝑜).
It follows that the marked random intersection graph
(
DRIG[0,𝑇]

𝑛
(𝒘), 𝑜

𝑛
, ((𝜎

𝑎

ON, 𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇]
)

converges
locally in probability to

(
CP[0,𝑇]

, 𝑜, (𝑡ON, 𝑡OFF)
)
, where

(
CP[0,𝑇]

, 𝑜, (𝑡ON, 𝑡OFF)
)

is a marked version of (CP[0,𝑇]
, 𝑜) where

the marks are i.i.d. with distribution given in (72).

We prove Theorem 2.10 in Section 3.5.

Remark 2.2. (Marks in (CP[0,𝑇]
, 𝑜, (𝑡ON, 𝑡OFF))).

Similarly as in the static or unmarked union case,
the limit

(
CP[0,𝑇]

, 𝑜, (𝑡ON, 𝑡OFF)
)

is constructed from the
(

BP[0,𝑇]
𝑙

, 𝑜, (𝑡ON, 𝑡OFF)
)

via a community projection. Hence,
the time marks have to be appropriately transferred to
(
CP[0,𝑇]

, 𝑜, (𝑡ON, 𝑡OFF)
)

during this community projection.
This happens in the same way as it happened for the marked
DRIG[0,𝑇]

𝑛
(𝒘), which we have explained in the paragraph “Marks

in DRIG[0,𝑇]
𝑛

(𝒘)” before Theorem 2.10.

2.4 | Dynamic Local Convergence

Switching pace: Note that we have defined 𝜎
𝑎

ON and 𝜎
𝑎

OFF as
the first switch-ON and switch-OFF times within the time inter-
val [0, 𝑇] and we did not comment on the possibility that some
groups might switch ON again during this period of time. We
address this issue by arguing that it is unlikely to encounter such a
group in a neighborhood of a uniformly chosen left-vertex, which
is the subject of the following lemma:

Lemma 2.2. (Existence of groups that switch ON more
than once in the union graph). Denote the neighborhood of
a uniformly chosen left-vertex in BGRG[0,𝑇]

𝑛
(𝒘) by 𝐵

[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
). As

𝑛 → ∞,

P(∃𝑎 ∈ 𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) ∶ 𝑎 ON twice in [0, 𝑇])) → 0 (73)

We prove Lemma 2.2 in Section 3.6.

Lemma 2.2 implies that groups that switch ON more than once in
the union graph do not contribute significantly to the structure of
a neighborhood of a uniformly chosen vertex. Hence, the neigh-
borhood in the union graph neglecting these groups is a good
approximation of the actual neighborhood and it can be used to
construct the dynamic graph. We summarize this statement in
the following corollary:

Corollary 2.2. Denote the neighborhood of a uniformly cho-
sen left-vertex in BGRG𝑠

𝑛
(𝒘) by 𝐵

𝑠

𝑟
(𝑉

(𝑙)

𝑛
) and the neighborhood of

a uniformly chosen left-vertex in BGRG[0,𝑇]
𝑛

(𝒘) restricted to groups
that switch ON only once in [0, 𝑇] and are present at time 𝑠 by
�̃�

𝑠,[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
). As 𝑛 → ∞, for every finite 𝑟 > 0 and every 𝑠 ∈ [0, 𝑇],

with high probability (whp)
{

𝐵
𝑠

𝑟
(𝑉

(𝑙)

𝑛
) = �̃�

𝑠,[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

}

(74)

We refrain from formally proving Corollary 2.2 and instead pro-
vide a short justification here: the fact that �̃�

𝑠,[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) is con-

tained in 𝐵
𝑠

𝑟
(𝑉

(𝑙)

𝑛
) follows immediately. The other direction fol-

lows directly from Lemma 2.2.

Thus, for every 𝑠 ∈ [0, 𝑇], BGRG𝑠

𝑛
(𝒘) is a subgraph of

BGRG[0,𝑇]
𝑛

(𝒘) containing only these groups that are active at time
𝑠, that is, the groups 𝑎 with (𝜎

𝑎

ON, 𝜎
𝑎

OFF) such that 𝑠 ∈ [𝜎
𝑎

ON, 𝜎
𝑎

OFF].
DRIG𝑠

𝑛
(𝒘) is then a community projection (see (14)) of such

a BGRG𝑠

𝑛
(𝒘). Hence, the convergence of the union graph and

joint convergence of edge marks, guaranteed by the indepen-
dence of the marks and their convergence in distribution, yield
convergence of finite-dimensional distributions of the dynamic
graph BGRG𝑠

𝑛
(𝒘) for every 𝑠 ∈ [0, 𝑇]. Thanks to that, we can

describe local limits of (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] and consecutively of
(DRIG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇].

When looking at (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] as a process in time, we
choose a random root 𝑜

𝑛
only once and then we investigate

the evolution of its neighborhood in time. Since such a pro-
cess encounters discontinuities with respect to the local metric,
the convergence of finite-dimensional distributions is not suf-
ficient to deduce the convergence of the entire process. How-
ever, as we have explained in more detail before Theorem 1.3,
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if we treat (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] for every 𝑠 ∈ [0, 𝑇] as a function
from [0, 𝑇] into the Polish space of rooted graphs 

⋆
with the

d

⋆

metric, it suffices to add a suitable tightness criterion to
deduce the dynamic convergence of the process in time (see
[31, Chapter 13] or/and [51, Chapter 16]), that is, weak con-
vergence in 𝐷([0, 𝑇], 𝑆) in the Skorokhod 𝐽1 topology, with 𝑆 =

(⋆, d
⋆

)). Details are given in the proof of Theorem 1.3 in
Section 3.7.

The limiting tree with a fixed weight: To facilitate the
description of the dynamic local limit, we start by introducing
(BP

𝑙
, 𝑣, 𝑤

𝑣
). This object is closely related to (BP

𝑙
, 0), with the

difference that here we fix the root and its weight to be 𝑣 and
𝑤

𝑣
respectively. The offspring distribution of this root is then

Poi(𝜇𝑤
𝑣
). We also keep track of the weights of the remaining

left-vertices in the tree, which are i.i.d. copies of 𝑊⋆, and hence
the offspring distribution of these vertices is Poi(𝜇𝑊⋆

𝑖
) for each

vertex 𝑖.

Distinguished vertices: We also introduce the notion of distin-
guished vertices. By the “left-root” we mean simply a root that is
a left-vertex.

Definition 2.12. (Distinguished vertices).

1. The left-root is the distinguished vertex of every right-vertex
that appears as it offspring.

2. For all other right-vertices, at time 0, the unique left-vertex
that is closest to the left-root is the distinguished vertex.

3. The distinguished vertex of the right-vertex that was created
or switched ON at 𝑣 is 𝑣.

4. The distinguished vertices of every other right-vertex in the
subtree of 𝑣 is that unique left-vertex that is closest to 𝑣.

In the context of limiting rooted trees, the distinguished vertex of
a right-vertex 𝑎 can be intuitively understood as the parent of that
right-vertex.

Dynamic limiting objects: Having explained (BP
𝛾
, 0),

(BP[0,𝑇]
𝛾

, 0) and its marked version in detail, we can now describe
the dynamic ((BP𝑠

𝛾
, 0))

𝑠∈[0,𝑇] more precisely. We do that consider-
ing the two partitions separately. As we have already mentioned
in Section 1.3, at time 𝑠 = 0,

(
(BP𝑠

𝑙
, 0)

)
is equal in distribution to

(BP
𝑙
, 0). The weight 𝑤0 of the root has law 𝑊 and the weights

(𝑤
𝑣
)
𝑣

of all other left-vertices are i.i.d. copies of 𝑊
⋆. These

weights are recorded accordingly. For 𝑠 > 0, the dynamic local
limit evolves through two simultaneous processes: the addition
and removal of right-vertices. We now describe these processes
in more detail:

The right-vertex addition: A right-vertex of degree 𝑘 is added at
the root at rate𝑘𝑝

𝑘
𝑤

𝑣
at every present left-vertex 𝑣. The other (𝑘 −

1) left-vertices added as children of a newly attached right-vertex
of size 𝑘 receive weights that are i.i.d. copies of 𝑊

⋆
, and these

weights are recorded. Every such vertex 𝑢 upon arrival is attached
to the tree along with (BP

𝑙
, 𝑢, 𝑤

𝑢
).

The right-vertex removal: Each right-vertex 𝑎 having a dis-
tinguished vertex 𝑣

𝑎
is removed at rate 1. Along with 𝑎, all

left-vertices attached to𝑎 except for 𝑣
𝑎

are also removed, as well as
all their children (i.e., their whole tree). The limiting object con-
tinuously evolves according to the dynamic defined by the above
processes.

The dynamic right-partition ((BP𝑠

𝑟
, 0))

𝑠∈[0,𝑇] is far less interest-
ing. At time 𝑠 = 0, it is equal in distribution to (BP

𝑟
, 0). However,

since we know from Lemma 2.2 that in the limit we can neglect
right-vertices that switch ON more than once, the root of this copy
of (BP

𝑟
, 0) will be removed at rate 1 and its local limit will be an

empty graph for the remaining time.

The dynamic local limit of the intersection graph ((CP𝑠
, 𝑜))

𝑠∈[0,𝑇]
is naturally a (dynamic) community projection of ((BP𝑠

𝑙
, 0))

𝑠∈[0,𝑇].
Thus, at time 𝑠 = 0, it is a community projection of (CP0

, 𝑜) with
the weights assigned as described previously, that is, the root
having weight 𝑤0 with law 𝑊 and all the other vertices hav-
ing weights (𝑤

𝑣
)
𝑣

distributed as i.i.d. copies of 𝑊
⋆. For 𝑠 > 0,

cliques of 𝑘 − 1 vertices are added at rate 𝑘𝑝
𝑘
𝑤

𝑣
at every vertex 𝑣.

Each of the 𝑘 − 1 vertices in these cliques is attached along with
(CP

𝑙
, 𝑣, 𝑤

𝑣
)—a community projection of (BP

𝑙
, 𝑣, 𝑤

𝑣
). Simultane-

ously, each 𝑘-clique is removed at rate 1 along with its subtree
and except for the root, or the distinguished vertex the closest to
the root.

Remark 2.3. (The subgraph of the limit of the marked
union graph versus the dynamic limit). Note that we
have constructed the dynamic local limit by deriving the local
limit of the marked union graph and then extracting corre-
sponding subgraphs for each 𝑠 ∈ [0, 𝑇] (see the text below
Corollary 2.2 for heuristics, and Section 3.7 for more details).
However, we do not mention this construction as the back-
ground of the dynamic limiting object explained above and
directly describe its dynamic instead. We now give a heuris-
tic explanation of why both approaches will generate the same
dynamic limit.

Without loss of generality, we give our argument for the root and
its offspring distribution only, as the behavior of the vertices in
consecutive generations is analogous. Recall that the degree of
the root (given that the root is a left-vertex) in the local limit of
BGRG[0,𝑇]

𝑛
(𝒘) is Poisson distributed with parameter (1 + 𝑇)𝑊𝜇.

Now, in the above construction, the degree of the root at time 0
is Poisson distributed with parameter 𝑊𝜇 and consecutive chil-
dren arrive at rate 𝑊𝜇, which implies there are Poi(𝑇𝑊𝜇) new
arrivals up to time 𝑇. Thus, the total degree of the root in the
dynamic object up to time 𝑇 is Poi((1 + 𝑇)𝑊𝜇)-distributed and
we conclude that the offspring distributions in the two construc-
tions coincide.

It remains to compare the distribution of the arrival and depar-
ture times of the children. It is not difficult to verify that with
(𝑡ON, 𝑡OFF) with a joint distribution as in (71) we have 𝑡OFF −

𝑡ON ∼ 𝐸𝑥𝑝(1), which corresponds to the departure times of
the dynamic objects. Now, note that the marginal distribution
P(𝑡ON ≤ 𝑠1) is approximately equal to lim

𝑠2→∞
P(𝑡ON ≤ 𝑠1, 𝑡OFF ≤

𝑠2|𝑡ON < 𝑇) = (𝑠1 + 1)∕(𝑇 + 1) which implies that 𝑡ON is uni-
formly distributed. Note that the joint cumulative distribution
function is conditioned on the presence in the union graph. If we
condition the arrival times of the root’s offspring in the dynamic
limiting object on the number of these arrivals, due the properties
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of interarrival times during a Poisson process, we obtain that they
are also uniformly distributed. Hence, conditionally on the roots
in both constructions having the same number of offspring, the
laws that govern the exact arrival and departure times of this off-
spring are the same. Thus, the objects generated via both of these
constructions coincide.

Remark 2.4. (Dynamic generalized random graphs).
Recall Remark 1.2, where we have explained how to obtain the
dynamic generalized and Erdős-Rényi random graphs from our
model, and we concluded that Theorem 1.3 can be extended to
them. Hence, it is also possible to specify dynamic limiting objects
of these graphs: in the limit of the dynamic GRG, the root is
equipped with the weight 𝑤0 with law 𝑊 and the remaining ver-
tices are equipped with (𝑤

𝑣
)
𝑣

distributed as i.i.d. copies of 𝑊
⋆.

At time 𝑠 = 0, the root has a Poi(𝑤0) number of children and
every other vertex 𝑣 has a Poi(𝑤

𝑣
) number of children. Then,

every edge is broken at rate 1 and, on the other hand, i.i.d. copies
of the limiting tree from time 𝑠 = 0 keep arriving at the root at
rate 𝑤0. Analogously, copies of the Poi(𝑤

𝑣
) branching tree keep

arriving at rate 𝑤
𝑣

for each other vertex 𝑣, and the vertices that
arrive within them again have weights distributed as i.i.d. copies
of 𝑊

⋆. The limit of the dynamic Erdős-Rényi random graph
behaves analogously: at time 𝑠 = 0 it is equal in distribution to
a Poi(𝜆) branching process tree. Then, every edge is removed at
rate 1 and a new copy of the Poi(𝜆) tree arrives at every vertex
at rate 𝜆.

2.5 | Dynamic Giant Component

We want to show that the process (𝐽
𝑛
(𝑠))

𝑠∈[0,𝑇] with 𝐽
𝑛
(𝑠) =

1
{𝑜𝑛∈𝒞

𝑠

1 }
converges to another appropriate indicator process.

Since both of these processes encounter discontinuities, we need
to use the Skorokhod 𝐽1 topology once again in order to obtain the
desired convergence. The Skorokhod 𝐽1 topology on 𝐷[0, 𝑇]—the
space of càdlàg functions on [0, 𝑇]—is given by a metric 𝑑

0 (see
[31, eq. 12.16]), which takes care of the time deformation present
in processes with discontinuities. For more explanation, see a
well-known characterization of weak convergence in 𝐷[0, 𝑇]
(see [31]).

The most important step in our proofs is localization of
the giant, that is, noticing that the sequence of processes
(𝐽

𝑛
(𝑠))

𝑠∈[0,𝑇] is close in distribution to the sequence of processes
(𝐽

(𝑟)

𝑛
(𝑠))

𝑠∈[0,𝑇], with

𝐽
(𝑟)

𝑛
(𝑠) = 1{

𝜕𝐵
𝐺
𝑠
𝑛

𝑟
(𝑜

𝑛
)≠∅

} (75)

where 𝜕𝐵
𝐺

𝑠

𝑛

𝑟
(𝑜

𝑛
) denotes the set of vertices at distance 𝑟 from the

root 𝑜
𝑛

in (BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇] at time 𝑠. Indeed, for two distinct
time points 𝑠1, 𝑠2 ∈ [0, 𝑇],

P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1) = P(𝐽

(𝑟)

𝑛
(𝑠1) = 𝐽

(𝑟)

𝑛
(𝑠2) = 1)

+ P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1) − P(𝐽

(𝑟)

𝑛
(𝑠1) = 𝐽

(𝑟)

𝑛
(𝑠2) = 1)

(76)

Denote the complement of an event 𝐴 by 𝐴
𝑐. Using the fact that

for any two events 𝐴 and 𝐵, |P(𝐴) − P(𝐵)| ≤ P(𝐴 ⧵ 𝐵) = P(𝐴 ∩

𝐵
𝑐
) and subsequently applying De Morgan’s law we obtain

|
|
|
P(𝐽

𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1) − P(𝐽

(𝑟)

𝑛
(𝑠1) = 𝐽

(𝑟)

𝑛
(𝑠2) = 1)||

|

≤ P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1, {𝐽(𝑟)

𝑛
(𝑠1) = 𝐽

(𝑟)

𝑛
(𝑠2) = 1}𝑐)

= P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1, 𝐽(𝑟)

𝑛
(𝑠1) ≠ 1OR𝐽

𝑛
(𝑠1)

= 𝐽
𝑛
(𝑠2) = 1, 𝐽(𝑟)

𝑛
(𝑠2) ≠ 1)

≤ P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1, 𝐽(𝑟)

𝑛
(𝑠1) ≠ 1)

+ P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1, 𝐽(𝑟)

𝑛
(𝑠2) ≠ 1)

where the last inequality follows from the union bound. Then,

P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1, 𝐽(𝑟)

𝑛
(𝑠1) ≠ 1) + P(𝐽

𝑛
(𝑠1)

= 𝐽
𝑛
(𝑠2) = 1, 𝐽(𝑟)

𝑛
(𝑠2) ≠ 1)

≤ P(𝐽
𝑛
(𝑠1) = 1, 𝐽(𝑟)

𝑛
(𝑠1) ≠ 1) + P(𝐽

𝑛
(𝑠2)

= 1, 𝐽(𝑟)

𝑛
(𝑠2) ≠ 1) ≤ 2P

(
𝐽
(𝑟)

𝑛
(𝑠1) ≠ 𝐽

𝑛
(𝑠1)

)

where the last step follows from stationarity. Taking 𝑛 → ∞,
thanks to the static local limit and our result on the static giant
component (see Theorem 2.6), that is, the fact that pointwise for
any 𝑠, we have

|𝒞 𝑠

1 |

𝑛

P
−−→P (|𝒞 𝑠

(𝑜)| = ∞) (77)

where P is the law of the local limit. We obtain

lim
𝑛→∞

P
(

𝐽
(𝑟)

𝑛
(𝑠1) ≠ 𝐽

𝑛
(𝑠1)

)

= P
(

1
{𝜕𝐵𝐺𝑠

𝑟
(𝑜)≠∅}

≠ 1
{|𝒞 𝑠 (𝑜)|=∞}

)

(78)

which, after additionally taking 𝑟 → ∞, yields

lim
𝑟→∞

lim sup
𝑛→∞

|
|
|
P(𝐽

𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1)

− P(𝐽
(𝑟)

𝑛
(𝑠1) = 𝐽

(𝑟)

𝑛
(𝑠2) = 1)||

|
= 0

Thus,

lim
𝑛→∞

P(𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1) = lim

𝑟→∞

lim
𝑛→∞

P(𝐽
(𝑟)

𝑛
(𝑠1) = 𝐽

(𝑟)

𝑛
(𝑠2) = 1)

Thanks to this link, we can deduce the convergence of the
dynamic giant process from the dynamic local weak convergence
(see Theorem 1.3), which states that, as 𝑛 → ∞,

(𝐽
(𝑟)

𝑛
(𝑠))

𝑠∈[0,𝑇]
d

−−→ ( (𝑟)
(𝑠))

𝑠∈[0,𝑇] (79)

In the proof of Theorem 1.4 we show how to extend the above
argument to all finite-dimensional distributions. As a result, the
convergence of all finite-dimensional distributions derived via
localization paired with the tightness of the process will guaran-
tee convergence of (𝐽

𝑛
(𝑠))

𝑠∈[0,𝑇]. We remark that this technique
is not restricted to our model and it can be applied to any other
dynamic graph for which (77) and (79) hold.

2.6 | Dynamic Largest Group

We investigate the behavior of the process (𝑛−1∕𝛼
𝐾

[0,𝑇]
max )

𝑇≥0, where
𝐾

[0,𝑇]
max is the maximum group size in the time interval [0, 𝑇]. It is an
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increasing process describing the largest group observed by a cer-
tain time point 𝑇. As such, the process in question also encoun-
ters discontinuities, just like the previous dynamic processes we
have described, and hence, to deduce its convergence, we once
again use the theory of convergence in Skorokhod topology.

Remark 2.5. Note that in the case of the maximal group
present in the union graph, we do not run into the same problem
of creating connections that do not exist as was the case with
degrees of vertices. Hence, the largest group ever active in the
union graph is at the same time the largest group ever active in
the dynamic graph.

Remark 2.6. (Maximum group size in the static graph).
The maximum group size in the static graph at any fixed time has
the same distribution as 𝐾

{0}
max, thus, it also scales as 𝑛

1∕𝛼 .

3 | Proofs of the Main Results

Here we provide proofs of all mentioned results, unless we previ-
ously stated we would prove them in the Appendix.

3.1 | Proof of the Condition for Asymptotic
Equivalence for Bipartite Multi-Graphs

Proof of Theorem 2.7. Note that BRG
𝑛
(𝝅) and BRG

𝑛
(�̂�) can

be entirely encoded by the group presences, just like simple
random graphs are encoded by the edge presences. Thus, the
asymptotic equivalence of two bipartite multi-graphs BRG

𝑛
(𝝅)

and BRG
𝑛
(�̂�) is equivalent to the asymptotic equivalence of

two sequences of independent Bernoulli random variables with
success probabilities 𝝅 = (𝜋

𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
and �̂� = (�̂�

𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
. By

[50, Theorem 2.2] and under the assumption that there exists 𝜀 >

0 such that max
𝑎∈∪

𝑘≥2[𝑛]𝑘
�̂�

𝑎
≤ 1 − 𝜀, such sequences are asymp-

totically equivalent if

lim
𝑛→∞

∑

𝑎∈∪
𝑘≥2[𝑛]𝑘

(𝜋
𝑎
− �̂�

𝑎
)

2

�̂�
𝑎

= 0 (80)

3.2 | Proof of Asymptotic Equivalence of the
Union Graph and the Rescaled Graph

Proof of Theorem 2.8. Recall (64) and (66). To verify condition
(67) we first compute

0 ≤ 𝜋
𝑎,[0,𝑇]
ON − 𝜋

𝑎,(𝑇)

ON

≤
(1 + 𝑇)𝑓(|𝑎|)

∏
𝑖∈𝑎

𝑤
𝑖

𝓁|𝑎|−1 + 𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

−
(1 + 𝑇)𝑓(|𝑎|)

∏
𝑖∈𝑎

𝑤
𝑖

𝓁|𝑎|−1 + (1 + 𝑇)𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

≤
(1 + 𝑇)

2
𝑓

2
(|𝑎|)(

∏
𝑖∈𝑎

𝑤
𝑖
)

2

𝓁|𝑎|−1(𝓁|𝑎|−1 + (1 + 𝑇)𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖
)

(81)

where we have used the fact that 1 − 𝑒
−𝑥 ≤ 𝑥. Hence, by the fact

that 𝑘! < 𝑘
𝑘 and that for any 𝑘 ≥ 2 and any 𝑐 ≥ 1,

∑

𝑗1<···<𝑗
𝑘
∈[𝑛]

(𝑤
𝑗1
· · · 𝑤

𝑗
𝑘

)
𝑐

(𝓁𝑘−1
𝑛

)𝑐
=

1
𝑘!

∑

𝑗1 , . . . ,𝑗𝑘∈[𝑛]

(𝑤
𝑗1
· · · 𝑤

𝑗
𝑘

)
𝑐

(𝓁𝑘−1
𝑛

)𝑐

≤

(
∑

𝑗∈[𝑛]
𝑤

𝑐

𝑗
)
𝑘

𝑘!(𝓁𝑘−1
𝑛

)𝑐

(82)

we have that

∑

𝑎∈∪
𝑘≥2[𝑛]𝑘

(𝜋
𝑎,[0,𝑇]
ON − 𝜋

𝑎,(𝑇)

ON )
2

𝜋
𝑎,(𝑇)

ON

≤ (1 + 𝑇)
3

∞∑

𝑘=2

∑

𝑗1<···<𝑗
𝑘
∈[𝑛]

(𝑘!)
3
(𝑝

𝑘
)

3
(𝑤

𝑗1
· · · 𝑤

𝑗
𝑘

)
3

(𝓁𝑘−1
𝑛

)3

≤ (1 + 𝑇)
3

∞∑

𝑘=2
𝑘

4
𝑝

3
𝑘

1
𝓁𝑘−1
𝑛

(
𝑘

2

𝓁
𝑛

)𝑘−2
(

E[𝑊
3
𝑛
]

E[𝑊
𝑛
]

)𝑘

= 𝑜(1)

(83)

which can be shown using suitable truncation arguments: one
with respect to the group size and one with respect to the weights.
For the first truncation, we can fix a sequence 𝑏

𝑛
→ ∞ and show

that the contribution from groups 𝑎 with |𝑎| > 𝑏
𝑛

vanishes. Then
take 𝑏

𝑛
= 𝑜(

√
𝑛) to bound (83) for 𝑎 with |𝑎| ≤ 𝑏

𝑛
. For the second

truncation, we eliminate vertices with large weights in a similar
manner. For more technical details see Appendix B, where anal-
ogous truncation arguments occur frequently. Hence, for some
sequence 𝜀

𝑛
→ 0 as 𝑛 → ∞,

P
⎛
⎜
⎜
⎝

∑

𝑎∈∪
𝑘≥2[𝑛]𝑘

(𝜋
𝑎,[0,𝑇]
ON −𝜋

𝑎,(𝑇)

ON )
2

𝜋
𝑎,(𝑇)

ON
≥ 𝜀

𝑛

⎞
⎟
⎟
⎠

→ 0 (84)

The desired equivalence of BGRG[0,𝑇]
𝑛

(𝒘) and BGRG(𝑇)

𝑛
(𝒘)

follows.

3.3 | Proof of Local Convergence of the Union
Graph

Proof of Theorem 2.9. Hence, it also turns out that the limit-
ing degree sequences in the union graph satisfy similar proper-
ties as the ones in the static graph, with the Poisson parameter
and proportion of groups of size 𝑘 rescaled by the factor 𝑇 + 1.
Hence, the bipartite union graph asymptotically behaves like the
static bipartite graph with slightly larger edge probabilities and
converges locally in probability to a related limiting object with
accordingly larger offspring distributions.

3.4 | Proof of the Law of the Marks

Proof of Lemma 2.1. We compute the law of the marks of a
fixed group 𝑎 taking into account two possible starting states:

P(𝜎
𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2|𝑎 ON in [0, 𝑇])

=

P(𝜎
𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2, 𝑎 ON in [0, 𝑇])
P(𝑎 ON in [0, 𝑇])

=

P(𝜎
𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2)

P(𝑎 ON in [0, 𝑇])

=

P(𝜎
𝑎

ON = 0, 𝜎𝑎

OFF ≤ 𝑠2) + P(𝑎 OFF at 0, 𝜎𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2)

P(𝑎 ON in [0, 𝑇])
(85)

We compute all three ingredients separately:

Step 1.

P(𝜎
𝑎

ON = 0, 𝜎𝑎

OFF ≤ 𝑠2) = 𝜋
𝑎

ONP(𝑎 switches OFF in (0, 𝑠2])

= 𝜋
𝑎

ON(1 − 𝑒
−𝑠2 )

(86)
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Step 2.

P(𝑎 OFF at 0, 𝜎𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2) = 𝜋
𝑎

OFFP

(𝑎 switches ON in (0, 𝑠1], 𝑎 switches OFF in (𝜎
𝑎

ON, 𝑠2])
(87)

The second term can be computed as

P(𝑎 switches ON in (0, 𝑠1] and switches OFF in (𝜎
𝑎

ON, 𝑠2])

=
∫

𝑠1

0
P(𝐸𝑥𝑝(𝜆

𝑎

ON) ≤ 𝑠2

− 𝐸𝑥𝑝(𝜆
𝑎

OFF)|𝐸𝑥𝑝(𝜆
𝑎

OFF) = 𝑥)𝑓
𝐸𝑥𝑝(𝜆

𝑎

OFF)
(𝑥)d𝑥

=
∫

𝑠1

0
(1 − 𝑒

−𝜆
𝑎

ON(𝑠2−𝑥)
)𝜆

𝑎

OFF𝑒
−𝜆

𝑎

OFF𝑥d𝑥

(88)

Splitting the terms and using the fact that ∫ 𝑠1
0 𝜆

𝑎

OFF𝑒
−𝜆

𝑎

OFF𝑥d𝑥 =

P(𝐸𝑥𝑝(𝜆
𝑎

OFF) ≤ 𝑠1) we obtain

P(𝑎 switches ON in (0, 𝑠1] and switches OFF in (𝜎
𝑎

ON, 𝑠2])

= P(Exp(𝜆𝑎

OFF) ≤ 𝑠1) − 𝜆
𝑎

OFF∫

𝑠1

0
𝑒
−(𝑠2−𝑥)

𝑒
−𝜆

𝑎

OFF𝑥d𝑥

= 1 − 𝑒
−𝜆

𝑎

OFF𝑠1 −

𝜆
𝑎

OFF𝑒
−𝑠2

𝜆
𝑎

OFF − 1
(1 − 𝑒

−𝑠1(𝜆
𝑎

OFF−1)
)

(89)

Hence,

P(𝑎 OFF at 0, 𝜎𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2)

= 𝜋
𝑎

OFF

(

1 − 𝑒
−𝜆

𝑎

OFF𝑠1 −

𝜆
𝑎

OFF

𝜆
𝑎

OFF − 1
(𝑒

−𝑠2 − 𝑒
−𝑠1𝜆

𝑎

OFF𝑒
𝑠1−𝑠2 )

) (90)

Step 3. For the probability in the denominator of (85), we recall
(64) once more.

Gathering all three steps together, the expression in (85) becomes

P(𝜎
𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2|𝑎 ON in [0, 𝑇])

=

𝜋
𝑎

ON(1 − 𝑒
−𝑠2 )

𝜋
𝑎

ON + 𝜋
𝑎

OFF(1 − 𝑒
−𝜆

𝑎

OFF𝑇)

+

𝜋
𝑎

OFF(1 − 𝑒
−𝜆

𝑎

OFF𝑠1 −
𝜆
𝑎

OFF
𝜆
𝑎

OFF−1
(𝑒

−𝑠2 − 𝑒
−𝑠1𝜆

𝑎

OFF𝑒
𝑠1−𝑠2 ))

𝜋
𝑎

ON + 𝜋
𝑎

OFF(1 − 𝑒
−𝜆

𝑎

OFF𝑇)

(91)

We will now take the limit of the two fractions separately as 𝑛 →
∞. We simplify

𝜋
𝑎

ON(1 − 𝑒
−𝑠2 )

𝜋
𝑎

ON + 𝜋
𝑎

OFF(1 − 𝑒
−𝜆

𝑎

OFF𝑇)

=
1 − 𝑒

−𝑠2

1 + 1∕(𝜆𝑎

OFF)(1 − 𝑒
−𝜆

𝑎

OFF𝑇)
(92)

As we know, lim
𝑛→∞

𝜆
𝑎

OFF = lim
𝑛→∞

𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

𝓁|𝑎|−1
𝑛

= 0. Substitut-

ing 𝑥 =
𝑓(|𝑎|)

∏
𝑖∈𝑎

𝑤
𝑖

𝓁|𝑎|−1
𝑛

, we obtain, by L’Hospital’s rule,

lim
𝑛→∞

𝜆
𝑎

OFF
−1

(1 − 𝑒
−𝜆

𝑎

OFF𝑇) = lim
𝑥→0

1−𝑒
−𝑥𝑇

𝑥
= lim

𝑥→0
𝑇𝑒

−𝑥𝑇

1
= 𝑇 (93)

so that

lim
𝑛→∞

𝜋
𝑎

ON(1 − 𝑒
−𝑠2 )

𝜋
𝑎

ON + 𝜋
𝑎

OFF(1 − 𝑒
−𝜆

𝑎

OFF𝑇)

=
1 − 𝑒

−𝑠2

1 + 𝑇
(94)

Now we compute the limit as 𝑛 → ∞ of the second term in (91).
We again simplify, dividing by 𝜋

𝑎

OFF, to obtain

1 − 𝑒
−𝜆

𝑎

OFF𝑠1 +
𝜆
𝑎

OFF
1−𝜆

𝑎

OFF
(𝑒

−𝑠2 − 𝑒
−𝑠1𝜆

𝑎

OFF𝑒
𝑠1−𝑠2 )

𝜆
𝑎

OFF + 1 − 𝑒
−𝜆

𝑎

OFF𝑇

=
1 − 𝑒

−𝜆
𝑎

OFF𝑠1

𝜆
𝑎

OFF + 1 − 𝑒
−𝜆

𝑎

OFF𝑇

+

𝜆
𝑎

OFF(𝑒
−𝑠2 − 𝑒

−𝑠1𝜆
𝑎

OFF𝑒
𝑠1−𝑠2 )

(1 − 𝜆
𝑎

OFF)(𝜆
𝑎

OFF + 1 − 𝑒
−𝜆

𝑎

OFF𝑇)

=∶ 𝐴
𝑛
+ 𝐵

𝑛

(95)

Then, using the same substitution as previously,

lim
𝑛→∞

𝐴
𝑛
= lim

𝑥→0

1 − 𝑒
−𝑥𝑠1

𝑥 + 1 − 𝑒−𝑥𝑇
= lim

𝑥→0

𝑠1𝑒
−𝑥𝑠1

1 + 𝑇𝑒−𝑥𝑇
=

𝑠1

1 + 𝑇
(96)

and

lim
𝑛→∞

𝐵
𝑛
= lim

𝑥→0

𝑥𝑒
−𝑠2 − 𝑥𝑒

−𝑠1𝑥𝑒
𝑠1−𝑠2

1 − 𝑒−𝑥𝑇 − 𝑥2 + 𝑥𝑒−𝑥𝑇
=

𝑒
−𝑠2 − 𝑒

𝑠1−𝑠2

1 + 𝑇
(97)

Combining these limits yields

lim
𝑛→∞

𝜋
𝑎

OFF(1 − 𝑒
−𝜆

𝑎

OFF𝑠1 −
𝜆
𝑎

OFF
𝜆
𝑎

OFF−1
(𝑒

−𝑠2 − 𝑒
−𝑠1𝜆

𝑎

OFF𝑒
𝑠1−𝑠2 ))

𝜋
𝑎

ON + 𝜋
𝑎

OFF(1 − 𝑒
−𝜆

𝑎

OFF𝑇)

=
𝑠1 + 𝑒

−𝑠2 − 𝑒
𝑠1−𝑠2

1 + 𝑇

(98)

Thus, by (91),

lim
𝑛→∞

P(𝜎
𝑎

ON ≤ 𝑠1, 𝜎
𝑎

OFF ≤ 𝑠2|𝑎 ON in [0, 𝑇]) =
1 − 𝑒

𝑠1−𝑠2 + 𝑠1

1 + 𝑇

(99)

as required.

3.5 | Proof of Local Limit of Marked Union
Graphs

Proof of Theorem 2.10. Theorem 2.9 shows local convergence
of the unmarked BGRG[0,𝑇]

𝑛
(𝒘), which means that for any fixed

rooted graph (𝐻, 𝑜
′
) and 𝑟 ∈ N,

P(𝐵
𝑟
(𝐺

[0,𝑇]
𝑛

, 𝑉
(𝑙)

𝑛
) ≃ (𝐻, 𝑜

′
)|𝐺

𝑛
) ∶=

1
|𝐺

𝑛
|

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

[0,𝑇]
𝑛

,𝑖)≃(𝐻,𝑜′)}

P
−−→P(𝐵

𝑟
(BP[0,𝑇]

𝑙
, 𝑜) ≃ (𝐻, 𝑜

′
))

where we have written (𝐺
[0,𝑇]
𝑛

, 𝑜) instead of BGRG[0,𝑇]
𝑛

for the sake
of simplicity of notation in this proof. If the marked version of the
union graph converges locally in probability, then for any fixed
marked rooted graph (𝐻, 𝑜

′
, (𝑚1, 𝑚2)), where (𝑚1, 𝑚2) are marks,

and 𝑟 ∈ N,

P
(
d

⋆

((𝐺
[0,𝑇]
𝑛

, 𝑉
(𝑙)

𝑛
, ((𝜎

𝑎

ON, 𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇]), (𝐻, 𝑜
′
, (𝑚1, 𝑚2)))

≤
1

𝑟 + 1
|(𝐺[0,𝑇]

𝑛
, ((𝜎

𝑎

ON, 𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇])
)

∶=
1
𝑛

∑

𝑖∈[𝑛]

1
{d⋆ ((𝐺

[0,𝑇]
𝑛

,𝑖,((𝜎
𝑎

ON ,𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇]),(𝐻,𝑜′,(𝑚1 ,𝑚2)))≤
1

𝑟+1
}

P
−−→P

(

d

⋆

((BP[0,𝑇]
𝑙

, 𝑜, (𝑡ON, 𝑡OFF)), (𝐻, 𝑜
′
, (𝑚1, 𝑚2))) ≤

1
𝑟 + 1

)
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Note that the edge marks are independent since all the groups
switch ON and OFF independently of each other. Hence, if
the marks converge in distribution to some limiting marks
they will converge jointly for all groups and all 𝑠 ∈ [0, 𝑇]. In
Lemma 2.1 we have shown that they indeed converge and also
that the marks of all groups present within [0, 𝑇] are identi-
cally distributed. This implies that we can couple each pair of
marks with their limiting marks so that they are appropriately
close to each other. Hence, the proportion of vertices whose
neighborhoods look like (𝐻, 𝑜

′
, (𝑚1, 𝑚2)) must converge to

the probability that neighborhoods in 𝐵
𝑟
(BP[0,𝑇]

𝑙
, 𝑜, (𝑡ON, 𝑡OFF))

look like (𝐻, 𝑜
′
, (𝑚1, 𝑚2)), which precisely means that the

marked version of (BGRG[0,𝑇]
𝑛

(𝒘), 𝑉
(𝑙)

𝑛
) converges. Con-

vergence of the marked version of (BGRG[0,𝑇]
𝑛

(𝒘), 𝑉
(𝑟)

𝑛
) to

(BP[0,𝑇]
𝑟

, 𝑜, (𝑡ON, 𝑡OFF)) follows automatically, which implies
that (BGRG[0,𝑇]

𝑛
(𝒘), 𝑉

𝑏

𝑛
, ((𝜎

𝑎

ON, 𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇]) converges
to (BP[0,𝑇]

𝛾
, 𝑜, (𝑡ON, 𝑡OFF)). Next, the convergence of the marked

intersection graph follows from the convergence of the under-
lying bipartite structure, as community projection preserves
distances in the marked graph.

3.6 | Proof of the Switching Pace of the Groups
in the Union Graph

Proof of Lemma 2.2. For any finite 𝑟 > 0, we investigate

P(∃𝑎 ∈ 𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) ∶ 𝑎 ON twice in [0, 𝑇])

= E
[
P(∃𝑎 ∈ 𝐵

[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) ∶ 𝑎 ON twice in [0, 𝑇]|𝐺[0,𝑇]

𝑛
)

]

(100)

where we denote the 𝑟-neighborhood of a uniformly chosen ver-
tex in BGRG[0,𝑇]

𝑛
(𝒘) by 𝐵

[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) and for simplification we write

𝐺
[0,𝑇]
𝑛

instead of BGRG[0,𝑇]
𝑛

(𝒘) to denote conditioning on the
union graph. Applying the union bound yields

P(∃𝑎 ∈ 𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) ∶ 𝑎 ON twice in [0, 𝑇]|𝐺[0,𝑇]

𝑛
)

≤ 1 ∧

∑

𝑎∈𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

P(𝑎 ON twice in [0, 𝑇]|𝐺[0,𝑇]
𝑛

)
(101)

We first apply a suitable truncation (for more details see similar
cases, for instance, the proofs of Theorem B.3 or Remark B.3): we
truncate the maximum vertex weight by 𝑎

𝑛
and the maximum

group size by 𝑏
𝑛
, for example with 𝑎

𝑛
= log(𝑛), 𝑏

𝑛
= log(𝑛), to

obtain

∑

𝑎∈𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

P(𝑎 ON twice in [0, 𝑇]|𝐺[0,𝑇]
𝑛

)

=

∑

𝑎∈𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

P(𝑎 ON twice in [0, 𝑇]|𝐺[0,𝑇]
𝑛

)1
{max

𝑖

𝑤
𝑖
≤𝑎

𝑛
,max

𝑎

|𝑎|≤𝑏
𝑛
}

+ 𝑜P(1)
(102)

where the maxima are taken w.r.t. a vertex 𝑖 ∈ 𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) and

group 𝑎 ∈ 𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
). The remainder is small since Condition 1.1

implies that our union graph is sparse, and hence observing large
groups and vertices with large weights in a uniformly chosen

𝑟-neighborhood is unlikely. We now compute

P(𝑎 switches ON twice in [0, 𝑇]|𝐺[0,𝑇]
𝑛

)

=
P(𝑎 switches ON twice in [0, 𝑇]|𝑎 ON in [0, 𝑇])

P(𝑎 ON in [0, 𝑇])

=
P(𝑎 switches ON twice in [0, 𝑇])

P(𝑎 ON in [0, 𝑇])

(103)

where the first equality follows from the independence of groups.
We have

P(𝑎 switches ON twice in [0, 𝑇])

= 𝜋
𝑎

ONP(𝑎 switches OFF and ON again in [0, 𝑇])

+ 𝜋
𝑎

OFFP(𝑎 switches ON, then OFF and ON again in [0, 𝑇])
(104)

Recall that the times that groups spend in the ON and OFF states
are exponentially distributed with rates 𝐸𝑥𝑝(𝜆

𝑎

ON) and 𝐸𝑥𝑝(𝜆
𝑎

OFF)

respectively. Hence, using the fact that for all 𝑥, 1 − 𝑒
−𝑥 ≤ 𝑥,

P(𝑎 switches OFF and ON again in [0, 𝑇])

= P(𝐸𝑥𝑝(𝜆
𝑎

ON) + 𝐸𝑥𝑝(𝜆
𝑎

OFF) ≤ 𝑇)

≤ P(𝐸𝑥𝑝(𝜆
𝑎

OFF) ≤ 𝑇) = (1 − 𝑒
−𝜆

𝑎

OFF𝑇) ≤ 𝑇𝜆
𝑎

OFF ∧ 1

(105)

and, applying the same inequality again,

P(𝑎 switches ON, then OFF and ON again in [0, 𝑇])

= P(𝐸𝑥𝑝(𝜆
𝑎

OFF) + 𝐸𝑥𝑝(𝜆
𝑎

ON) + 𝐸𝑥𝑝
′
(𝜆

𝑎

OFF) ≤ 𝑇)

≤ P(𝐸𝑥𝑝(𝜆
𝑎

OFF) + 𝐸𝑥𝑝
′
(𝜆

𝑎

OFF) ≤ 𝑇) = 1 − 𝑒
−𝑇𝜆

𝑎

OFF

− 𝑇𝜆
𝑎

OFF𝑒
−𝑇𝜆

𝑎

OFF ≤ 𝑇𝜆
𝑎

OFF(1 − 𝑒
−𝑇𝜆

𝑎

OFF ) ≤ (𝑇𝜆
𝑎

OFF)
2
∧ 1

(106)

Substituting (105) and (106) into (104) and using that 𝜋
𝑎

ON ≤

𝜆
𝑎

OFF, 𝜋
𝑎

OFF ≤ 1 yields

P(𝑎 switches ON twice in [0, 𝑇]) ≤ (𝑇 + 𝑇
2
)(𝜆

𝑎

OFF)
2
∧ 1

(107)

To obtain the probability in the denominator of (103) recall (64).
Combining all of the above, we arrive at the bound

P(𝑎 switches ON twice in [0, 𝑇]|𝐺[0,𝑇]
𝑛

) ≤
(𝑇 + 𝑇

2
)(𝜆

𝑎

OFF)
2

1 − 𝑒
−𝑇𝜆

𝑎

OFF
∧ 1

(108)

Thus, substituting (108) into (101) and invoking (102) yields

E
[
P(∃𝑎 ∈ 𝐵

[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) ∶ 𝑎 ON twice in [0, 𝑇]|𝐺[0,𝑇]

𝑛
)

]

≤ E
⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝

∑

𝑎∈𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

(
(𝑇 + 𝑇

2
)(𝜆

𝑎

OFF)
2

1 − 𝑒
−𝑇𝜆

𝑎

OFF
∧ 1

)

⋅ 1
{max

𝑖

𝑤
𝑖
≤𝑎

𝑛
,max

𝑎

|𝑎|≤𝑏
𝑛
}

⎞
⎟
⎟
⎠

∧ 1
⎤
⎥
⎥
⎦

(109)

Note that by the local limit of BGRG[0,𝑇]
𝑛

(𝒘) shown in
Theorem 2.9 we know that |𝐵[0,𝑇]

𝑟
(𝑉

(𝑙)

𝑛
)| is tight. We also know that

𝜆
𝑎

OFF is small for 𝑛 large for a group 𝑎 with max
𝑖∈𝑎

𝑤
𝑖
≤ 𝑎

𝑛
and
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|𝑎| ≤ 𝑏
𝑛

and for 𝑥 small it holds that 1 − 𝑒
−𝑥 ≥ 𝑥∕2. Therefore,

as 𝑛 → ∞,

∑

𝑎∈𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

(
(𝑇 + 𝑇

2
)(𝜆

𝑎

OFF)
2

1 − 𝑒
−𝑇𝜆

𝑎

OFF )

∧ 1

)

⋅ 1
{max

𝑖∈𝑎

𝑤
𝑖
≤𝑎

𝑛
,max |𝑎|≤𝑏

𝑛
}

≤

∑

𝑎∈𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

2(𝜆𝑎

OFF ∧ 1)1
{max

𝑖∈𝑎

𝑤
𝑖
≤𝑎

𝑛
,max |𝑎|≤𝑏

𝑛
}

P
−−→ 0

(110)

Hence, by applying the dominated convergence theorem to (109)
we conclude

P(∃𝑎 ∈ 𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) ∶ 𝑎 ON twice in [0, 𝑇])) = 𝑜(1) (111)

3.7 | Proof of Dynamic Local Limit of the
Intersection Graph

Proof of Theorem 1.3. We first show the dynamic local weak
convergence of (BGRG𝑠

𝑛
(𝑤))

𝑠∈[0,𝑇] with a left-root, that is,

(

(BGRG𝑠

𝑛
, 𝑉

(𝑙)

𝑛
)

)

𝑠∈[0,𝑇]

d
−−→

(
(BP𝑠

𝑙
, 𝑜)

)

𝑠∈[0,𝑇] (112)

The proof follows in two steps: we first show convergence of
finite-dimensional distributions and then tightness—the two
conditions required for the weak convergence of processes with
càdlàg sample paths from [0, 𝑇] to a Polish space [31, Theorem
13.1]. As in separable and complete metric spaces tightness is
equivalent to relative compactness in distribution, we verify the
latter (in the form of two suitable conditions) as it is more conve-
nient to work with. For the convenience of the reader, we repro-
duce the results we apply in Appendix C (see Theorem C.3).

Condition i: Convergence of finite-dimensional distribu-
tions. Once more, for the sake of simplicity of notation, through-
out the proof we abbreviate BGRG𝑠

𝑛
(𝒘) to 𝐺

𝑠

𝑛
. We need to show

that, for all 𝑠1 ≤ 𝑠2 ≤ · · · ≤ 𝑠
𝑘
∈ [0, 𝑇]

P(∀𝑗 ∈ [𝑘] ∶ 𝐵
𝑟
(𝐺

𝑠
𝑗

𝑛
, 𝑉

(𝑙)

𝑛
)

≃ (𝐻
𝑗
, 𝑜)) =

1
𝑛

E

[
∑

𝑖∈[𝑛]

1{

𝐵
𝑟
(𝐺

𝑠𝑗

𝑛
,𝑖)≃(𝐻

𝑗
,𝑜)

}

]

→ P(∀𝑗 ∈ [𝑘] ∶ 𝐵
𝑟
(BP𝑠

𝑗

𝑙
, 𝑜) ≃ (𝐻

𝑗
, 𝑜))

(113)

The convergence follows immediately from the convergence of
the marked union graph. Indeed, if the marked union graph con-
verges, appropriate marked-graph isomorphisms must hold. In
particular, since marks converge,

P(𝑠 ∈ [𝜎
𝑎

ON, 𝜎
𝑎

OFF]) → P(𝑠 ∈ [𝑡ON, 𝑡OFF]) (114)

Thus, the local convergence of the marked union graph implies
that a neighborhood of a uniformly chosen vertex in the marked
union graph (BGRG[0,𝑇]

𝑛
(𝒘), 𝑉

(𝑙)

𝑛
, ((𝜎

𝑎

ON, 𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇])

resembles a neighborhood in the marked (BP[0,𝑇]
𝑙

, 𝑜, (𝑡ON, 𝑡OFF)).
Take 𝑠 ∈ [0, 𝑇] and consider a neighborhood of a uniformly
chosen vertex in the subgraph of the marked rooted graph
(BGRG[0,𝑇]

𝑛
(𝒘), 𝑉

(𝑙)

𝑛
, ((𝜎

𝑎

ON, 𝜎
𝑎

OFF))𝑎∶𝑎 ON in [0,𝑇]) that is obtained
by restricting to those groups 𝑎 such that 𝑠 ∈ [𝜎

𝑎

ON, 𝜎
𝑎

OFF] and 𝑎

is in the connected component of 𝑉
𝑙

𝑛
at time 𝑠. Then, given the

local convergence of the market union graph, for every 𝑠 ∈ [0, 𝑇]
such a neighborhood must resemble a neighborhood of 𝑜 in the
subgraph of (BP[0,𝑇]

𝑙
, 𝑜, ((𝑡ON, 𝑡OFF))) incorporating accordingly

only right-vertices 𝑎 such that 𝑠 ∈ [𝑡ON, 𝑡OFF] and 𝑎 is in the
connected component of 𝑜 at time 𝑠.

Condition ii: Tightness condition on the limiting process.
Since the convergence of finite-dimensional distributions com-
bined with tightness yields process convergence for random pro-
cesses with càdlàg sample paths from [0, 𝑇] to a separable space, it
remains to show that (BGRG𝑠

𝑛
(𝒘), 𝑉

(𝑙)

𝑛
)
𝑠∈[0,𝑇] is tight with respect

to the Skorokhod 𝐽1 topology. In separable and complete spaces,
tightness is equivalent to relative compactness in distribution
and hence it can be verified by checking two convenient con-
ditions (see Appendix C for a brief summary of the results we
use, taken from [31, Chapter 13] and [51, Chapter 16]). We now
treat the first of them. We want to show that, for all 𝜀 > 0 and
as 𝛿 ↘ 0,

P(d

⋆

((𝐺
𝑇
, 𝑜), (𝐺

𝑇−𝛿
, 𝑜)) > 𝜀) → 0 (115)

which is equivalent to showing that, for all 𝜀 > 0 and as 𝛿 ↘ 0,

P(𝐵1∕𝜀(𝐺
𝑇
, 𝑜) ≄ 𝐵1∕𝜀(𝐺

𝑇−𝛿
, 𝑜)) → 0 (116)

From the proof of Condition i,

lim
𝛿↘0

P(𝐵1∕𝜀(𝐺
𝑇
, 𝑜) ≄ 𝐵1∕𝜀(𝐺

𝑇−𝛿
, 𝑜)) = lim

𝛿↘0
lim
𝑛→∞

P(𝐵1∕𝜀(𝐺
𝑇

𝑛
, 𝑉

(𝑙)

𝑛
)

≄ 𝐵1∕𝜀(𝐺
𝑇−𝛿

𝑛
, 𝑉

(𝑙)

𝑛
))

(117)

Recall that the only aspect that can cause changes in neigh-
borhoods is group activation and deactivation. Note that the
groups that changed their status within [𝑇 − 𝛿, 𝑇] must in par-
ticular be ON during [𝑇 − 𝛿, 𝑇], which means that they are in
the union graph of this time frame. Therefore, as it turns out to
be useful for the upper bound, we now condition on the union
graph over [𝑇 − 𝛿, 𝑇], that is, the graph consisting of 𝐺

𝑇−𝛿

𝑛
and

all the groups that switched ON within (𝑇 − 𝛿, 𝑇]. For simplic-
ity, we denote this union graph by 𝐺

[𝑇−𝛿,𝑇]

𝑛
. We also denote the

𝑟-neighborhood of 𝑉
(𝑙)

𝑛
in this union graph by 𝐵

[𝑇−𝛿,𝑇]

𝑟
(𝑉

(𝑙)

𝑛
). We

compute

P(𝐵1∕𝜀(𝐺
𝑇

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑇−𝛿

𝑛
, 𝑉

(𝑙)

𝑛
)|𝐺[𝑇−𝛿,𝑇]

𝑛
)

= P(∃𝑎 ∈ 𝐵
[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
) ∶ 𝑎 switches OFF in

[𝑇 − 𝛿, 𝛿]|𝐺[𝑇−𝛿,𝑇]

𝑛
)

+ P(∃𝑎 ∈ 𝐵
[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
) ∶ 𝑎 switches ON in

[𝑇 − 𝛿, 𝛿]|𝐺[𝑇−𝛿,𝑇]

𝑛
)

(118)

Hence,

P(𝐵1∕𝜀(𝐺
𝑇

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑇−𝛿

𝑛
, 𝑉

(𝑙)

𝑛
)|𝐺[𝑇−𝛿,𝑇]

𝑛
)

= (1 − 𝑒
−𝛿#{𝑎∈𝐵

[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
)}
) ∧ 1

+

(

1 − 𝑒

−𝛿
∑

𝑎∈𝐵
[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
)
𝜆
𝑎

OFF
)

∧ 1

(119)
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Note that we can bound each of the expressions in brackets
above by applying the inequality 1 − 𝑒

−𝑥 ≤ 𝑥, which holds for any
𝑥. Thus,

P(𝐵1∕𝜀(𝐺
𝑇

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑇−𝛿

𝑛
, 𝑉

(𝑙)

𝑛
)|𝐺[𝑇−𝛿,𝑇]

𝑛
)

≤ 𝛿#{𝑎 ∈ 𝐵
[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
)} ∧ 1 + 𝛿

∑

𝑎∈𝐵
[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
)

𝜆
𝑎

OFF ∧ 1 (120)

Further, by using a similar reasoning as in the proof of
Lemma 2.2, we will show that each of the multipliers of 𝛿 in the
above sum is bounded whp. Fix a large constant 𝑏

𝛿
, and consider

𝒟 =

{

|𝐵
[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
)| ≤ 𝑏

𝛿

}

(121)

Recall that in Theorem 2.9 we derived local convergence of the
union graph, which guarantees that the size of the neighborhood
of a uniformly chosen vertex in the union graph is a tight random
variable, that is, for every 𝜀 > 0 and every 𝛿 > 0, we can find a 𝑏

𝛿

sufficiently large, such that P(𝒟 ) ≥ 1 − 𝜀. For the second term in
(120), recall (102) from the proof of Lemma 2.2 which guarantees
that whp we can truncate the maximum weight and the maxi-
mum group size in 𝐵

[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
) by 𝑎

𝑛
and 𝑏

𝑛
respectively, with

𝑎
𝑛
= log(𝑛), 𝑏

𝑛
= log(𝑛). Hence, for every 𝜀 > 0 and every 𝛿 >

0, we can find 𝑐
𝛿
(𝑛) with 𝑐

𝛿
(𝑛) = 𝑜(𝑛), such that P(ℰ) ≥ 1 − 𝜀,

where

ℰ =

{

max
𝑎∈𝐵

[𝑇−𝛿,𝑇]

1∕𝜀 (𝑉
(𝑙)

𝑛
)

𝜆
𝑎

OFF ≤ 𝑐
𝛿
(𝑛)

}

(122)

Then, given 𝐺
[𝑇−𝛿,𝑇]

𝑛
for which𝒟 andℰ hold, the second term in

(120) can be bounded by a function of 𝑏
𝛿

and 𝑐
𝛿
(𝑛):

P(𝐵1∕𝜀(𝐺
𝑇

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑇−𝛿

𝑛
, 𝑉

(𝑙)

𝑛
)|𝐺[𝑇−𝛿,𝑇]

𝑛
) ≤ 𝛿𝑏

𝛿
(1 + 𝑐

𝛿
(𝑛))

(123)

After taking the expectation of (123) with respect to the union
graph we obtain

P
(
𝐵1∕𝜀(𝐺

𝑇

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑇−𝛿

𝑛
, 𝑉

(𝑙)

𝑛
);𝒟 ∩ℰ

)

≤ E
[
𝛿𝑏

𝛿
(1 + 𝑐

𝛿
(𝑛))1𝒟∩ℰ

]
= 𝛿𝑏

𝛿
(1 + 𝑐

𝛿
(𝑛))P(𝒟 ∩ℰ)

(124)

Note that with our choice of 𝑐
𝛿
(𝑛), for any 𝛿 > 0, 𝑐

𝛿
(𝑛) vanishes

as 𝑛 → ∞. Additionally, for every 𝑏
𝛿
, 𝛿𝑏

𝛿
can be made arbitrar-

ily small by taking 𝛿 small. Thus, for every 𝑏
𝛿

and 𝑐
𝛿
(𝑛), the

entire expression under the first expectation in (124) can be made
arbitrarily small by taking 𝑛 → ∞ and subsequently 𝛿 ↘ 0, as
in (117). Hence, by the dominated convergence theorem, also
(124) can be made arbitrarily small for every 𝑏

𝛿
and 𝑐

𝛿
(𝑛), by tak-

ing 𝑛 → ∞ and subsequently 𝛿 ↘ 0. As we argued that for such
choices of 𝑏

𝛿
and 𝑐

𝛿
(𝑛), the events𝒟 andℰ each hold with proba-

bility at least 1 − 𝜀, we conclude that (116) holds by taking 𝑛 → ∞

and subsequently 𝛿 ↘ 0, as well as 𝜀 small.

Condition iii: Tightness condition on the original pro-
cess. We now check the second condition guaranteeing rela-
tive compactness in distribution, and hence tightness. For our
dynamic graph process, this translates to verifying if, for all

𝑇 > 0, 𝜀, 𝜂 > 0, there exists 𝑛0 ≥ 1 and 𝛿 > 0 such that for
all 𝑛 ≥ 𝑛0

P

(

sup
(𝑠,𝑠1 ,𝑠2)∈𝒮𝛿

min[d

⋆

((𝐺
𝑠1
𝑛
, 𝑉

(𝑙)

𝑛
), (𝐺

𝑠

𝑛
, 𝑉

(𝑙)

𝑛
))

d

⋆

((𝐺
𝑠

𝑛
, 𝑉

(𝑙)

𝑛
), (𝐺

𝑠2
𝑛
, 𝑉

(𝑙)

𝑛
))] > 𝜀

)

≤ 𝜂

(125)

with 𝒮
𝛿
= {(𝑠, 𝑠1, 𝑠2) ∶ 𝑠 ∈ [𝑠1, 𝑠2], |𝑠2 − 𝑠1| ≤ 𝛿}. Note that the

above is equivalent to

P
(
∃𝑠 ∈ [𝑠1, 𝑠2], 𝑠2 − 𝑠1 < 𝛿 ∶ 𝐵1∕𝜀(𝐺

𝑠1
𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑠

𝑛
, 𝑉

(𝑙)

𝑛
)

𝐵1∕𝜀(𝐺
𝑠

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑠2
𝑛
, 𝑉

(𝑙)

𝑛
)

)
≤ 𝜂

(126)

We partition [0, 𝑇] into intervals of length 𝛿 and introduce

𝑆
𝑙
= {two jumps changes in the neighborhood of 𝑉

(𝑙)

𝑛

in the 𝑙th interval of length 𝛿}

(127)

where by a “change” we mean that a relevant isomorphism does
not hold anymore, as in (126), that is,

{
there is a change in the neighborhood of 𝑉

(𝑙)

𝑛
in [𝑎, 𝑏]

}

=

{
∃𝑠 ∈ [𝑎, 𝑏] ∶ 𝐵1∕𝜀(𝐺

𝑎

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑠

𝑛
, 𝑉

(𝑙)

𝑛
)

}

Note that thanks to the stationarity, the probability of a change
in [0, 𝑠] and then another change in [𝑠, 𝛿] can be bounded by
the probability of two changes in [0, 𝛿]. Hence, by the union
bound,

(3.47) ≤ P

(
𝑇∕𝛿⋃

𝑙=1
𝑆
𝑙

)

≤
𝑇

𝛿
P(𝑆1) (128)

where 𝑆1 is then accordingly the event of two changes in the time
interval [0, 𝛿]. We now proceed analogously as in the proof of
the previous condition. Recall that the only aspect that can cause
changes in neighborhoods is group activation and deactivation.
Note that the groups that changed their status within [0, 𝑇] must
in particular be ON during [0, 𝑇], which means they are in the
union graph BGRG[0,𝑇]

𝑛
(𝒘). Therefore, as it turns out to be useful

for the upper bound, we now condition on the union graph. For
simplicity, we denote the union graph by 𝐺

[0,𝑇]
𝑛

. We also denote
the 𝑟-neighborhood of 𝑉(𝑙)

𝑛
in the union graph by 𝐵

[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
). We

compute

P(𝑆1|𝐺
[0,𝑇]
𝑛

) = P(∃𝑎1 ≠ 𝑎2 ∈ 𝐵
[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
) ∶ 𝑎1

𝑎2 switch OFF in [0, 𝛿]|𝐺[0,𝑇]
𝑛

)

+ P(∃𝑎1 ≠ 𝑎2 ∈ 𝐵
[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
) ∶ 𝑎1 switches OFF

𝑎2 switches ON in [0, 𝛿]|𝐺[0,𝑇]
𝑛

)

+ P(∃𝑎1 ≠ 𝑎2 ∈ 𝐵
[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
) ∶ 𝑎1

𝑎2 switch ON in [0, 𝛿]|𝐺[0,𝑇]
𝑛

)

(129)
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Hence,

P(𝑆1|𝐺
[0,𝑇]
𝑛

)

= (1 − 𝑒
−𝛿#{𝑎∈𝐵

[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
)}
)

2

+ (1 − 𝑒
−𝛿#{𝑎∈𝐵

[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
)}
)

(

1 − 𝑒

−𝛿
∑

𝑎∈𝐵
[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
)
𝜆
𝑎

OFF
)

∧ 1

+

(

1 − 𝑒

−𝛿
∑

𝑎∈𝐵
[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
)
𝜆
𝑎

OFF
)

2
∧ 1

(130)

The above can be bounded analogously as for (119) in the proof
of Condition ii, that is, we first apply 1 − 𝑒

−𝑥 ≤ 𝑥 to each of the
expressions; then, we fix a large constant �̂�

𝛿
and a constant 𝑐

𝛿
(𝑛)

with 𝑐
𝛿
(𝑛) = 𝑜(𝑛) and consider

�̂� =

{

|𝐵
[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
)| ≤ �̂�

𝛿

}

and

ℰ̂ =

{

max
𝑎∈𝐵

[0,𝑇]
1∕𝜀 (𝑉

(𝑙)

𝑛
)

𝜆
𝑎

OFF ≤ 𝑐
𝛿
(𝑛)

} (131)

As previously, using local convergence of the union graph
(Theorem 2.9) and (102) from the proof of Lemma 2.2, we remark
that for every 𝜀 > 0 and every 𝛿 > 0, we can find a �̂�

𝛿
sufficiently

large and 𝑐
𝛿
(𝑛) with 𝑐

𝛿
(𝑛) = 𝑜(𝑛), such that P(�̂� ) ≥ 1 − 𝜀 and

P(ℰ̂) ≥ 1 − 𝜀. Then, given �̂� and ℰ̂ ,

P(𝑆1|𝐺
[0,𝑇]
𝑛

) ≤ 𝛿
2
�̂�

2
𝛿
(1 + 𝑐

𝛿
(𝑛) + 𝑐

2
𝛿
(𝑛)) (132)

After taking the expectation of (132) with respect to the union
graph, and substituting the result into (128), we obtain

P
(
∃𝑠 ∈ [𝑠1, 𝑠2], 𝑠2 − 𝑠1 < 𝛿 ∶ 𝐵1∕𝜀(𝐺

𝑠1
𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑠

𝑛
, 𝑉

(𝑙)

𝑛
),

𝐵1∕𝜀(𝐺
𝑠

𝑛
, 𝑉

(𝑙)

𝑛
) ≄ 𝐵1∕𝜀(𝐺

𝑠2
𝑛
, 𝑉

(𝑙)

𝑛
); �̂� ∩ ℰ̂

)

≤
𝑇

𝛿
(𝛿

2
�̂�

2
𝛿
(1 + 𝑐

𝛿
(𝑛) + 𝑐

2
𝛿
(𝑛))P(�̂� ∩ ℰ̂))

= 𝑇𝛿�̂�
2
𝛿
(1 + 𝑐

𝛿
(𝑛) + 𝑐

2
𝛿
(𝑛))P(�̂� ∩ ℰ̂)

(133)

By the same reasoning as in the proof of Condition ii, for 𝑛 large,
the above can be made arbitrarily small for every �̂�

𝛿
and every

𝑐
𝛿
(𝑛) with 𝑐

𝛿
(𝑛) = 𝑜(𝑛), by taking 𝛿 small. As we argued that for

such choices of �̂�
𝛿

and 𝑐
𝛿
(𝑛), the events �̂� and ℰ̂ each hold with

probability at least 1 − 𝜀, we conclude that (126) holds for 𝑛 large
by taking 𝛿 and 𝜀 small as a function of 𝜂.

Consequence: For every 𝑠 ∈ [0, 𝑇], DRIG𝑠

𝑛
(𝒘) can be built from

BGRG𝑠

𝑛
(𝒘) via a community projection, which preserves graph

isomorphism and tightness. Hence, its convergence follows from
the just shown convergence of BGRG𝑠

𝑛
(𝒘), and its local limit,

(CP𝑠
, 𝑜), is a community projection of the limit of BGRG𝑠

𝑛
(𝒘).

Remark 3.1. In the proof of Theorem 1.3 we show dynamic
local weak convergence. However, we argue that in the same
manner, we could derive dynamic local convergence in probabil-
ity, which means that

1
𝑛

∑

𝑖∈[𝑛]

1
{(BGRG𝑠

𝑛
(𝒘))

𝑠∈[0,𝑇]∈}

P
−−→P((𝐺

𝑠
, 𝑜)

𝑠∈[0,𝑇] ∈ ) (134)

for all eventsmeasurable with respect to 𝐷(
⋆
, [0, 𝑇]) (i.e., the

probability measures on 
⋆

converge in probability). Indeed, note
that neighborhood processes of two independent uniformly cho-
sen vertices are i.i.d. stochastic processes, and hence converge to
i.i.d. copies of the limiting graph. Thus, (134) holds.

3.8 | Proof of Convergence of the Dynamic
Giant Membership Process

Proof of Theorem 1.4. Note again that the giant component
in the intersection graph is whp equal to the giant component in
the underlying bipartite random graph. Hence, in this proof, we
only focus on the underlying bipartite random graph. To show
the desired convergence it suffices to show that (𝐽

𝑛
(𝑠))

𝑠∈[0,𝑇] and
( (𝑠))

𝑠∈[0,𝑇] satisfy Conditions i–iii from Theorem C.3.

Condition i: Convergence of finite-dimensional distribu-
tions. Note that thanks to our results on the static giant compo-
nent (see Theorem 2.6), pointwise for any 𝑠 ∈ [0, 𝑇],

P(𝐽
𝑛
(𝑠) = 1) = P(𝑜

𝑛
∈ 𝒞 𝑠

1 ) =
E[|𝒞 𝑠

1 |]

𝑛

𝑛→∞

−−−−→P(|𝒞 𝑠
(𝑜)| = ∞)

(135)

where 𝒞 𝑠
(𝑜) denotes the connected component of the root 𝑜 in

(𝐺
𝑠
, 𝑜) and (𝐺

𝑠
, 𝑜) is the limiting rooted graph at time 𝑠. Further-

more, as a consequence of the dynamic local weak convergence
(Theorem 1.3), as 𝑛 → ∞,

(𝐽
(𝑟)

𝑛
(𝑠))

𝑠∈[0,𝑇] =
(

1
{𝜕𝐵

𝐺
𝑠
𝑛

𝑟
(𝑜

𝑛
)≠∅}

)

𝑠∈[0,𝑇]

d
−−→

(

1
{𝜕𝐵𝐺𝑠

𝑟
(𝑜)≠∅}

)

𝑠∈[0,𝑇]

= (
(𝑟)
(𝑠))

𝑠∈[0,𝑇]
(136)

with 𝜕𝐵
𝐺

𝑠

𝑛

𝑟
(𝑜

𝑛
) = {𝑣 ∈ [𝑛] ∶ d

𝐺𝑠

𝑛

(𝑜
𝑛
, 𝑣) = 𝑟}, that is, the set of ver-

tices at graph distance 𝑟 from the root. Since we know what is
happening in local neighborhoods jointly for all 𝑠 ∈ [0, 𝑇] we
try to link the distribution of (𝐽

𝑛
(𝑠))

𝑠∈[0,𝑇] to the distribution of
(𝐽

(𝑟)

𝑛
(𝑠))

𝑠∈[0,𝑇]. For any 𝑟 > 0 and for all {𝑠1, . . . , 𝑠𝑘} ∈ [0, 𝑇],

P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1) = P(𝐽

(𝑟)

𝑛
(𝑠1) = · · · = 𝐽

(𝑟)

𝑛
(𝑠

𝑘
) = 1)

+ P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1) − P(𝐽

(𝑟)

𝑛
(𝑠1)

= · · · = 𝐽
(𝑟)

𝑛
(𝑠

𝑘
) = 1)

(137)

We look at the difference of probabilities in (137) and apply the
same reasoning as for the two-dimensional case presented in
Section 2.5:

|
|
|
P(𝐽

𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1) − P(𝐽

(𝑟)

𝑛
(𝑠1) = · · · = 𝐽

(𝑟)

𝑛
(𝑠

𝑘
) = 1)||

|

≤ P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1, {𝐽(𝑟)

𝑛
(𝑠1) = · · · = 𝐽

(𝑟)

𝑛
(𝑠

𝑘
) = 1}𝑐)

= P

(

𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1,

𝑘⋃

𝑖=1

{
𝐽
(𝑟)

𝑛
(𝑠

𝑖
) ≠ 1

}
)

= P

(
𝑘⋃

𝑖=1

{
𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1, 𝐽(𝑟)

𝑛
(𝑠

𝑖
) ≠ 1

}
)

≤ P

(
𝑘⋃

𝑖=1

{
𝐽
(𝑟)

𝑛
(𝑠

𝑖
) ≠ 𝐽

𝑛
(𝑠

𝑖
)

}
)

(138)
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Note that by the static local limit and (135),

lim
𝑟→∞

lim
𝑛→∞

P

(
𝑘⋃

𝑖=1

{
𝐽
(𝑟)

𝑛
(𝑠

𝑖
) ≠ 𝐽

𝑛
(𝑠

𝑖
)

}
)

≤ 𝑘 ⋅ lim
𝑟→∞

lim
𝑛→∞

P(𝐽
(𝑟)

𝑛
(𝑠) ≠ 𝐽

𝑛
(𝑠)) = 0

(139)

Hence,

lim
𝑟→∞

lim
𝑛→∞

|
|
|
P(𝐽

𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1) − P(𝐽

(𝑟)

𝑛
(𝑠1)

= · · · = 𝐽
(𝑟)

𝑛
(𝑠

𝑘
) = 1)||

|
= 0

(140)

and thus,

lim
𝑛→∞

P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1) = lim

𝑟→∞

lim
𝑛→∞

P(𝐽
(𝑟)

𝑛
(𝑠1)

= · · · = 𝐽
(𝑟)

𝑛
(𝑠

𝑘
) = 1)

(141)

However, by (136),

P(𝐽
(𝑟)

𝑛
(𝑠1) = · · · = 𝐽

(𝑟)

𝑛
(𝑠

𝑘
) = 1)

𝑛→∞

−−−−→P(
(𝑟)
(𝑠1)

= · · · = 
(𝑟)
(𝑠

𝑘
) = 1)

𝑟→∞

−−−−→P(|𝒞 𝐺
𝑠1
(𝑜)| = · · · = |𝒞 𝐺

𝑠
𝑘

(𝑜)| = ∞)

(142)

Hence,

P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1)

𝑛→∞

−−−−→P(|𝒞 𝐺
𝑠1
(𝑜)|

= · · · = |𝒞 𝐺
𝑠
𝑘

(𝑜)| = ∞)

We will now show that any other combination of values of
the finite-dimensional distribution can be expressed in terms of
sequences of 1’s. Note that {𝐽

𝑛
(𝑠) = 0} = {𝐽

𝑛
(𝑠) = 1}𝑐 for any 𝑠 ≥ 0.

Furthermore, by exclusion-inclusion, for all events 𝐴 and 𝐵,

P(𝐴 ∩ 𝐵
𝑐
) = P(𝐴) − P(𝐴 ∩ 𝐵) (143)

Write {𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘−1) = 1, 𝐽
𝑛
(𝑠

𝑘
) = 0} = 𝐴 ∩ 𝐵

𝑐 with
𝐴 = {𝐽

𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘−1) = 1} and 𝐵 = {𝐽
𝑛
(𝑠

𝑘
) = 1}. Hence,

P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘−1) = 1, 𝐽
𝑛
(𝑠

𝑘
) = 0)

= P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘−1) = 1)

− P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1)

(144)

We can extend this argument to sequences involving more 0’s to
conclude that, for any 𝑙 ∈ {1, . . . , 𝑘 − 1},

P(𝐽
𝑛
(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑙
) = 1, 𝐽

𝑛
(𝑠

𝑙+1) = · · · = 𝐽
𝑛
(𝑠

𝑘
) = 0)

=

∑

𝑆⊆{𝑙+1, . . . ,𝑘}
(−1)|𝑆|P(𝐽

𝑛
(𝑠

𝑖
) = 1∀𝑖 ∈ {1, . . . , 𝑙} ∪ 𝑆)

(145)

where the sum runs over all possible subsets 𝑆 of
{𝑙 + 1, . . . , 𝑘}. Thus, having proved the claim for the case
{𝐽𝑛(𝑠1) = · · · = 𝐽

𝑛
(𝑠

𝑘
) = 1}, we can conclude the claim for

any other combination of values of the finite-dimensional
distribution.

Condition ii: Tightness condition on the limiting process.
We want to show that, for all 𝜀 > 0, as 𝛿 ↘ 0,

P(| (𝑇) −  (𝑇 − 𝛿)| > 𝜀) → 0 (146)

Since ( (𝑠))
𝑠∈[0,𝑇] is an indicator process, the difference in abso-

lute value between any two points of the process equals either 0
or 1. Hence P(| (𝑇) −  (𝑇 − 𝛿)| > 𝜀) is equivalent to P(| (𝑇) −

 (𝑇 − 𝛿)| = 1), which is equivalent to P( (𝑇 − 𝛿) = 0, (𝑇) =

1) + P( (𝑇 − 𝛿) = 1, (𝑇) = 0). We investigate these two factors
separately. From the proof of Condition i,

lim
𝛿↘0

P( (𝑇 − 𝛿) = 0, (𝑇) = 1)

= lim
𝛿↘0

lim
𝑛→∞

P(𝐽
𝑛
(𝑇 − 𝛿) = 0, 𝐽

𝑛
(𝑇) = 1)

= lim
𝛿↘0

lim
𝑟→∞

lim
𝑛→∞

P(𝐽
(𝑟)

𝑛
(𝑇 − 𝛿) = 0, 𝐽(𝑟)

𝑛
(𝑇) = 1)

(147)

We compute

P(𝐽
(𝑟)

𝑛
(𝑇 − 𝛿) = 0, 𝐽(𝑟)

𝑛
(𝑇) = 1)

= P
(

𝜕𝐵
𝐺

𝑇−𝛿

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) = ∅, 𝜕𝐵

𝐺
𝑇

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) ≠ ∅

) (148)

which means that the boundary of the 𝑟-neighborhood of a uni-
formly chosen vertex is empty at time 𝑇 − 𝛿 but non-empty at
time point 𝑇. For that to happen there has to be a change in
groups’ statuses. Similarly as in the proof of Theorem 1.3, we use
the link with the union graph to obtain

P
(

𝜕𝐵
𝐺

𝑇−𝛿

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) = ∅, 𝜕𝐵

𝐺
𝑇

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) ≠ ∅|𝐺[0,𝑇]

𝑛

)

= P(∃𝑎 ∈ 𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
) ∶ 𝑎 switches ON in [𝑇 − 𝛿, 𝑇]|𝐺[0,𝑇]

𝑛
)

=

⎛
⎜
⎜
⎜
⎝

1 − 𝑒

−𝛿

∑

𝑎∈𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)

𝜆
𝑎

OFF⎞
⎟
⎟
⎟
⎠

∧ 1

(149)
Hence,

P(𝐽
(𝑟)

𝑛
(𝑇 − 𝛿) = 0, 𝐽(𝑟)

𝑛
(𝑇) = 1) ≤ E

𝐺
[0,𝑇]
𝑛

[

𝛿|𝐵
[0,𝑇]
𝑟

(𝑉
(𝑙)

𝑛
)|

]

(150)

which can be bounded in the same way as the terms in (120)
and hence converges to 0 as 𝑛 → ∞ and, subsequently, 𝑟 →
∞ and 𝛿 ↘ 0. We can compute the complementary probabil-
ity, P(𝜕𝐵

𝐺
𝑇−𝛿

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) ≠ ∅, 𝜕𝐵

𝐺
𝑇

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) = ∅), using similar reasoning.

Note that, conveniently, the probability of switching off is the
same for all groups. Thanks to this and the independence of
groups we obtain

P(𝜕𝐵
𝐺

𝑇−𝛿

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) ≠ ∅, 𝜕𝐵

𝐺
𝑇

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) = ∅|𝐺𝑇−𝛿

𝑛
)

= P(all 𝑎 ∈ 𝜕𝐵
𝐺

𝑇−𝛿

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) switch OFF|𝐺𝑇−𝛿

𝑛
)

=

∏

𝑎∈𝜕𝐵
𝐺
𝑇−𝛿
𝑛

𝑟
(𝑉

(𝑙)

𝑛
)

(1 − 𝑒
−𝛿

)

(151)

and thus,

P(𝜕𝐵
𝐺

𝑇−𝛿

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) ≠ ∅, 𝜕𝐵

𝐺
𝑇

𝑛

𝑟
(𝑉

(𝑙)

𝑛
) = ∅)

= E
𝐺𝑇−𝛿

𝑛

[

(1 − 𝑒
−𝛿

)
#{𝑎∶𝑎∈𝜕𝐵

𝐺
𝑇−𝛿
𝑛

𝑟
(𝑉

(𝑙)

𝑛
)}

] (152)
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With arguments similar to those used before to bound (120), we
can show that the above vanishes as 𝑛 → ∞, 𝑟 → ∞ and 𝛿 ↘ 0.
Combining (149) and (152) we conclude that condition (146)
holds.

Condition iii: Tightness condition on the original process.
We want to show that for any 𝜀, 𝜂 > 0 there exists𝑛0 ≥ 1 and 𝛿 > 0
such that, for all 𝑛 ≥ 𝑛0,

P

(

sup
(𝑠,𝑠1 ,𝑠2)∈𝒮𝛿

min
(
|
|
|
𝐽
𝑛
(𝑠) − 𝐽

𝑛
(𝑠1)

|
|
|
,
|
|
|
𝐽
𝑛
(𝑠2) − 𝐽

𝑛
(𝑠)

|
|
|

)

> 𝜀

)

≤ 𝜂

(153)

with 𝒮
𝛿
= {(𝑠, 𝑠1, 𝑠2) ∶ 𝑠 ∈ [𝑠1, 𝑠2], |𝑠2 − 𝑠1| ≤ 𝛿}. Note that

since (𝐽
𝑛
(𝑠))

𝑠∈[0,𝑇] is an indicator process, min(||
|
𝐽
𝑛
(𝑠) −

𝐽
𝑛
(𝑠1)

|
|
|
,
|
|
|
𝐽
𝑛
(𝑠2) − 𝐽

𝑛
(𝑠)

|
|
|
) > 𝜀 if and only if |

|
|
𝐽
𝑛
(𝑠) − 𝐽

𝑛
(𝑠1)

|
|
|
=

|
|
|
𝐽
𝑛
(𝑠2) − 𝐽

𝑛
(𝑠)

|
|
|
= 1, which is equivalent to 𝐽

𝑛
(𝑠) ≠ 𝐽

𝑛
(𝑠1), 𝐽𝑛(𝑠2) ≠

𝐽
𝑛
(𝑠). This means that one of two mutually exclusive

events occurs: either 𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1 and 𝐽

𝑛
(𝑠) = 0, or

𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 0 and 𝐽

𝑛
(𝑠) = 1. Note that we can skip the

supremum since for any 𝑠 ∈ [𝑠1, 𝑠2] the value of |
|
|
𝐽
𝑛
(𝑠) − 𝐽

𝑛
(𝑠1)

|
|
|

and |
|
|
𝐽
𝑛
(𝑠2) − 𝐽

𝑛
(𝑠)

|
|
|

is at most 1. Taking this all into consideration,
(153) becomes

P(∃𝑠, 𝑠1, 𝑠2 ∈ 𝒮
𝛿
∶ 𝐽

𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 1, 𝐽

𝑛
(𝑠) = 0

or 𝐽
𝑛
(𝑠1) = 𝐽

𝑛
(𝑠2) = 0, 𝐽

𝑛
(𝑠) = 1)

(154)

We apply the same approach as in the proof of Condition iii for
Theorem 1.3: we partition [0, 𝑇] into intervals of length 𝛿 and
denote

P(𝑅
𝑙
) = P(two changes of (𝐽

𝑛
(𝑠))

𝑠∈[0,𝑇]

in the 𝑙th interval of length 𝛿)

(155)

where by change’s we mean that the indicator process
(𝐽

𝑛
(𝑠))

𝑠∈[0,𝑇] switches from 0 to 1 or the other way around.
Then, by stationarity,

(3.75) = P
(⋃𝑇∕𝛿

𝑙=1 𝑅𝑙

)

≤
𝑇

𝛿
P(𝑅1) (156)

From the proof of the Condition i of Theorem 1.4 we know that
for some 𝑛0 big enough for all 𝑛 ≥ 𝑛0 and some 𝑠 ∈ [0, 𝛿],

P(𝐽
𝑛
(0) = 𝐽

𝑛
(𝛿) = 1, 𝐽

𝑛
(𝑠) = 0)

= lim
𝑟→∞

P(𝐽
(𝑟)

𝑛
(0) = 𝐽

(𝑟)

𝑛
(𝛿) = 1, 𝐽(𝑟)

𝑛
(𝑠) = 0)

= lim
𝑟→∞

P

(

1{

𝜕𝐵
𝐺

0
𝑛

𝑟
(𝑉

(𝑙)

𝑛
)≠∅

} = 1{

𝜕𝐵
𝐺
𝛿
𝑛

𝑟
(𝑉

(𝑙)

𝑛
)≠∅

}

= 1,1{

𝜕𝐵
𝐺
𝑠
𝑛

𝑟
(𝑉

(𝑙)

𝑛
)≠∅

} = 0
)

(157)

and naturally, the analogous will hold for the complemen-
tary probability P(𝐽

𝑛
(0) = 𝐽

𝑛
(𝛿) = 0, 𝐽

𝑛
(𝑠) = 1). Hence, from the

proof of Condition iii from Theorem 1.3 it follows that

P(𝑅1) ≤ P(𝑆1) = 𝑜(𝛿) (158)

with

P(𝑆
𝑙
) = P(two changes in the neighborhood of

𝑉
(𝑙)

𝑛
in the 𝑙th interval of length 𝛿)

(159)

as in (127) in the proof of Theorem 1.3. Thus, the required
condition holds.

Conclusion: Since all three conditions of Theorem C.3 hold, the
convergence follows.

3.9 | Proof of Convergence of the Size of the
Largest Group in [0, 𝑻]

Proof of Theorem 1.5. The proof consists of two parts. We start
by deriving convergence in distribution for 𝐾

[0,𝑇]
max ∕𝑛

1
𝛼 and after-

wards proceed to show that (𝐾[0,𝑇]
max ∕𝑛

1
𝛼 )

𝑇≥0 and the limiting pro-
cess (𝜅[0,𝑇]

max )
𝑇≥0 satisfy conditions of Theorem C.3, which will yield

the desired convergence.

Part 1: Convergence in distribution. To shorten the computa-
tions in the next part of the proof, we first derive convergence in
distribution of the random variable 𝐾

[0,𝑇]
max ∕𝑛

1
𝛼 . We fix 𝑇 ≥ 0 and

compute

P(𝐾
[0,𝑇]
max ≤ 𝑘𝑛

1∕𝛼
) = P(max{𝐾{0}

max, 𝐾
(0,𝑇]
max } ≤ 𝑘𝑛

1∕𝛼
)

=

∏

𝑙>𝑘𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

𝜋
𝑎

OFF ⋅ P(𝑎 never ON in (0, 𝑇]) (160)

Hence,

P(𝐾
[0,𝑇]
max ≤ 𝑘𝑛

1∕𝛼
) =

∏

𝑙>𝑘𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

𝓁𝑙−1
𝑛

𝓁𝑙−1
𝑛

+ 𝑙!𝑝
𝑙

∏
𝑖∈𝑎

𝑤
𝑖

×

∏

𝑙>𝑘𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

𝑒
−

𝑙!𝑝
𝑙

∏
𝑖∈𝑎 𝑤𝑖

𝓁𝑙−1
𝑛

𝑇

(161)

Note that

∏

𝑙>𝑘𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

𝑒
−

𝑙!𝑝
𝑙

∏
𝑖∈𝑎 𝑤𝑖

𝓁𝑙−1
𝑛

𝑇

=

∏

𝑙>𝑘𝑛1∕𝛼

𝑒
−𝑇

∑
𝑗1<···<𝑗

𝑙
∈[𝑛]

𝑙!𝑝
𝑙

∏
𝑖∈𝑎 𝑤𝑖

𝓁𝑙−1
𝑛

=

∏

𝑙>𝑘𝑛1∕𝛼

𝑒
−𝑇

𝑙!𝑝
𝑙
𝓁𝑛

𝑙!

∑
𝑗1 , . . . ,𝑗

𝑙
∈[𝑛]

𝑤𝑗1 ···𝑤𝑗
𝑙

𝓁𝑙
𝑛 = 𝑒

−𝑇𝓁
𝑛

∑

𝑙>𝑘𝑛
1∕𝛼

𝑝
𝑙

+ 𝑜(1)

= 𝑒
−𝑐

𝑝
(𝑇+1)𝓁

𝑛
(𝑘𝑛

1∕𝛼
)
−𝛼

+ 𝑜(1)

where 𝑐
𝑝

is such that
∑

𝑙>𝑘𝑛1∕𝛼 𝑝𝑙
= 𝑐

𝑝
(𝑘𝑛

1∕𝛼
)
−𝛼

(1 + 𝑜(1)) (recall
(35)), which plugged into (161) yields

P(𝐾
[0,𝑇]
max ≤ 𝑘𝑛

1∕𝛼
) = 𝑒

−𝑐
𝑝
(𝑇+1)𝓁

𝑛
(𝑘𝑛

1∕𝛼
)
−𝛼

×

∏

𝑙>𝑘𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

𝓁𝑙−1
𝑛

𝓁𝑙−1
𝑛

+ 𝑙!𝑝
𝑙

∏
𝑖∈𝑎

𝑤
𝑖

+ 𝑜(1)
(162)
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By a computation analogous to (162),

∏

𝑙>𝑘𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

𝓁𝑙−1
𝑛

𝓁𝑙−1
𝑛

+ 𝑙!𝑝
𝑙

∏
𝑖∈𝑎

𝑤
𝑖

=

∏

𝑙>𝑘𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

1
1 +

𝑙!𝑝
𝑙

∏
𝑖∈𝑎

𝑤
𝑖

𝓁𝑙−1
𝑛

= 𝑒

−

∑

𝑙>𝑘𝑛
1∕𝛼

∑

𝑎∈[𝑛]
𝑙

𝑙!𝑝
𝑙

∏
𝑖∈𝑎 𝑤𝑖

𝓁𝑙−1
𝑛

+ 𝑜(1) = 𝑒
−𝑐

𝑝
𝓁
𝑛
(𝑘𝑛

1∕𝛼
)
−𝛼

+ 𝑜(1)
(163)

Further, since E[𝑊
𝑛
] → E[𝑊] as 𝑛 → ∞,

lim
𝑛→∞

𝓁
𝑛
(𝑘𝑛

1∕𝛼
)
−𝛼

= lim
𝑛→∞

𝓁
𝑛

𝑘𝛼𝑛
= lim

𝑛→∞

E[𝑊
𝑛
]

𝑘𝛼
=

E[𝑊]

𝑘𝛼

(164)

we obtain that, for every 𝑇 ≥ 0,

lim
𝑛→∞

P

(
𝐾

[0,𝑇]
max

𝑛1∕𝛼
≤ 𝑘

)

= 𝑒
−𝑐

𝑝
(𝑇+1)𝑘−𝛼E[𝑊] (165)

Note that 𝑔(𝑘) = 𝑒
−𝑐

𝑝
(𝑇+1)𝑘−𝛼E[𝑊] is a cumulative distribution

function of the Fréchet distribution.

Part 2: Verifying appropriate conditions. We again check if
our processes fulfil Conditions i–iii of Theorem C.3.

Condition i: Convergence of the finite-dimensional distri-
bution. We want to show that for all {𝑠1, . . . , 𝑠𝑢} ∈ [0, 𝑡] and
𝑘1, 𝑘2, . . . , 𝑘𝑢

∈ N, as 𝑛 → ∞,

P

(
𝐾

[0,𝑠1]
max

𝑛1∕𝛼
≤ 𝑘1,

𝐾
[0,𝑠2]
max

𝑛1∕𝛼
≤ 𝑘2, . . . ,

𝐾
[0,𝑠

𝑢
]

max

𝑛1∕𝛼
≤ 𝑘

𝑢

)

→ P
(

𝜅
[0,𝑠1]
max ≤ 𝑘1, 𝜅

[0,𝑠2]
max ≤ 𝑘2, . . . , 𝜅

[0,𝑠
𝑢
]

max ≤ 𝑘
𝑢

)
(166)

Note that for every 𝑠
𝑖
, 𝑠

𝑗
∈ [0, 𝑡] with 𝑠

𝑖
< 𝑠

𝑗
it holds that

P(𝐾
[0,𝑠

𝑖
]

max > 𝐾
[0,𝑠

𝑗
]

max ) = 0. We perform the following loop:

𝑖 = 1, 𝐶
𝑖
= {𝑘1, . . . , 𝑘𝑢

}

𝑘
𝑖
= min 𝐶

𝑖
, �̄�

𝑖
= arg min 𝑘

𝑖

𝐶
𝑖+1 = 𝐶

𝑖
⧵ {(𝑘

𝑗
)
�̄�
𝑖

𝑗=1}

Iterate for 𝐶
𝑖

(167)

Note that (𝑘
𝑖
)
𝑖≥1 is a non-decreasing sequence. Hence, for any

input of the above loop 𝑘1, . . . , 𝑘𝑢
it follows that

P

(
𝐾

[0,𝑠1]
max

𝑛1∕𝛼
≤ 𝑘1,

𝐾
[0,𝑠2]
max

𝑛1∕𝛼
≤ 𝑘2, . . . ,

𝐾
[0,𝑠

𝑢
]

max

𝑛1∕𝛼
≤ 𝑘

𝑢

)

= P

(
𝐾

[0,𝑠1]
max

𝑛1∕𝛼
≤ 𝑘1,

𝐾
[0,𝑠2]
max

𝑛1∕𝛼
≤ 𝑘2, . . . ,

𝐾
[0,𝑠

𝑢
]

max

𝑛1∕𝛼
≤ 𝑘

𝑢

) (168)

Hence, we further assume that we are working with
non-decreasing sequences. Note that, by definition (see (29)), for
a partition {0, 𝑠1, 𝑠2, . . . , 𝑠𝑢−1, 𝑠𝑢} of the time interval [0, 𝑠

𝑢
],

𝐾
[0,𝑠

𝑢
]

max = max{𝐾[0,𝑠1]
max , 𝐾

(𝑠1 ,𝑠2]
max , . . . , 𝐾

(𝑠
𝑢−1 ,𝑠𝑢]

max } (169)

Thus,

P(𝐾
[0,𝑠1]
max ≤ 𝑘1𝑛

1∕𝛼
, 𝐾

[0,𝑠2]
max ≤ 𝑘2𝑛

1∕𝛼
, . . . , 𝐾

[0,𝑠𝑢]
max ≤ 𝑘

𝑢
𝑛

1∕𝛼
)

= P(𝐾
[0,𝑠1]
max ≤ 𝑘1𝑛

1∕𝛼
, max{𝐾[0,𝑠1]

max , 𝐾
(𝑠1 ,𝑠2]
max }

≤ 𝑘2𝑛
1∕𝛼

, . . . , max{𝐾[0,𝑠1]
max , 𝐾

(𝑠1 ,𝑠2]
max , . . . , 𝐾

(𝑠𝑢−1 ,𝑠𝑢]
max } ≤ 𝑘

𝑢
𝑛

1∕𝛼
)

= P(𝐾
[0,𝑠1]
max ≤ 𝑘1𝑛

1∕𝛼
, 𝐾

[0,𝑠1]
max ≤ 𝑘2𝑛

1∕𝛼
, 𝐾

(𝑠1 ,𝑠2]
max

≤ 𝑘2𝑛
1∕𝛼

, . . . , 𝐾
[0,𝑠1]
max ≤ 𝑘

𝑢
𝑛

1∕𝛼
, 𝐾

(𝑠1 ,𝑠2]
max ≤ 𝑘

𝑢
𝑛

1∕𝛼

, . . . , 𝐾
(𝑠𝑢−1 ,𝑠𝑢]
max ≤ 𝑘

𝑢
𝑛

1∕𝛼
)

= P(𝐾
[0,𝑠1]
max ≤ 𝑘1𝑛

1∕𝛼
, 𝐾

(𝑠1 ,𝑠2]
max ≤ 𝑘2𝑛

1∕𝛼
, . . . , 𝐾

(𝑠𝑢−1 ,𝑠𝑢]
max ≤ 𝑘

𝑢
𝑛

1∕𝛼
)

(170)

Note that 𝐾[0,𝑠1]
max , (𝐾

(𝑠
𝑖
,𝑠

𝑖+1]
max )

𝑖
are all independent, since the intervals

[0, 𝑠1], (𝑠1, 𝑠2], . . . , (𝑠𝑖 , 𝑠𝑖+1] for 𝑖 ≥ 1 do not overlap. Hence, using
the computation from Part 1 we obtain

P(𝐾
[0,𝑠1]
max ≤ 𝑘1𝑛

1∕𝛼
, 𝐾

(𝑠1 ,𝑠2]
max ≤ 𝑘2𝑛

1∕𝛼
, . . . , 𝐾

(𝑠
𝑢−1 ,𝑠𝑢]

max ≤ 𝑘
𝑢
𝑛

1∕𝛼
)

= P(𝐾
[0,𝑠1]
max ≤ 𝑘1𝑛

1∕𝛼
)

𝑢∏

𝑖=2
P(𝐾

(𝑠
𝑖−1 ,𝑠𝑖 ]

max ≤ 𝑘
𝑖
𝑛

1∕𝛼
)

= P(𝐾
[0,𝑠1]
max ≤ 𝑘1𝑛

1∕𝛼
)

𝑢∏

𝑖=2

×

⎛
⎜
⎜
⎝

∏

𝑙>𝑘
𝑖
𝑛1∕𝛼

∏

𝑎∈[𝑛]
𝑙

P(𝑎 never ON in (𝑠
𝑖−1, 𝑠𝑖])

⎞
⎟
⎟
⎠

= 𝑒
−𝑐

𝑝
(𝑠1+1)E[𝑊

𝑛
]𝑘

−𝛼

1
∏

𝑙>𝑘1𝑛
1∕𝛼

∏

𝑎∈[𝑛]
𝑙

𝓁𝑙−1
𝑛

𝓁𝑙−1
𝑛

+ 𝑙!𝑝
𝑙

∏
𝑖∈𝑎

𝑤
𝑖

×

𝑢∏

𝑖=2
𝑒
−(𝑠

𝑖
−𝑠

𝑖−1)E[𝑊
𝑛
]𝑘

−𝛼

𝑖

𝑛→∞

−−−−→ 𝑒
−𝑐

𝑝
(𝑠1+1)E[𝑊]𝑘

−𝛼

1

𝑢∏

𝑖=2
𝑒
−(𝑠

𝑖
−𝑠

𝑖−1)E[𝑊]𝑘
−𝛼

𝑖

(171)
Note that, since 𝑘1 ≤ 𝑘2 ≤ . . . ≤ 𝑘

𝑢
,

𝑒
−𝑐

𝑝
(𝑠1+1)E[𝑊]𝑘

−𝛼

1

𝑢∏

𝑖=2
𝑒
−(𝑠

𝑖
−𝑠

𝑖−1)E[𝑊]𝑘
−𝛼

𝑖

= P(𝜅
[0,𝑠1]
max ≤ 𝑘1)

𝑢∏

𝑖=2
P(𝜅

(𝑠
𝑖−1 ,𝑠𝑖 ]

max ≤ 𝑘
𝑖
)

= P(𝜅
[0,𝑠1]
max ≤ 𝑘1, 𝜅

(𝑠1 ,𝑠2]
max ≤ 𝑘2, . . . , 𝜅

(𝑠
𝑢−1 ,𝑠𝑢]

max ≤ 𝑘
𝑢
)

= P(𝜅
[0,𝑠1]
max ≤ 𝑘1, max{𝜅[0,𝑠1]

max , 𝜅
(𝑠1 ,𝑠2]
max }

≤ 𝑘2, . . . , max{𝜅[0,𝑠1]
max , 𝜅

(𝑠1 ,𝑠2]
max , . . . , 𝜅

(𝑠
𝑢−1 ,𝑠𝑢]

max } ≤ 𝑘
𝑢
)

= P(𝜅
[0,𝑠1]
max ≤ 𝑘1, 𝜅

[0,𝑠2]
max ≤ 𝑘2, . . . , 𝜅

[0,𝑠
𝑢
]

max ≤ 𝑘
𝑢
)

(172)

This proves the desired convergence from (166).

Condition ii: Tightness of the limiting process. We want to
show that

lim
𝛿↘0

P(
|
|
|
𝜅
[0,𝑇]
max − 𝜅

[0,𝑇−𝛿]

max
|
|
|
> 𝜀) = 0 (173)

which is equivalent to

lim
𝛿↘0

P(𝜅
[0,𝑇]
max > 𝜅

[0,𝑇−𝛿]

max + 𝜀) = 0 (174)
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By the proof of Condition i

lim
𝛿↘0

P(𝜅
[0,𝑇]
max > 𝜅

[0,𝑇−𝛿]

max + 𝜀) = lim
𝛿↘0

lim
𝑛→∞

P(𝐾
[0,𝑇]
max > 𝐾

[0,𝑇−𝛿]

max + 𝜀𝑛
1∕𝛼

)

(175)
We compute

P(𝐾
[0,𝑇]
max > 𝐾

[0,𝑇−𝛿]

max + 𝜀𝑛
1∕𝛼

) =

∞∑

𝑘=2

× P(group bigger than 𝑘 + 𝜀𝑛
1∕𝛼 switches ON in

× (𝑇 − 𝛿, 𝑇])P(𝐾
[0,𝑇−𝛿]

max = 𝑘)

=

∞∑

𝑘=2
(1 − 𝑒

−𝛿𝓁
𝑛

∑

𝑙>𝑘+𝜀𝑛
1∕𝛼 𝑝𝑙 )P(𝐾

[0,𝑇−𝛿]

max = 𝑘)

≤ 𝛿𝓁
𝑛

∞∑

𝑘=2
(𝑘 + 𝜀𝑛

1∕𝛼
)
−𝛼P(𝐾

[0,𝑇−𝛿]

max = 𝑘)

≤ 𝛿𝓁
𝑛

∞∑

𝑘=2
(𝜀𝑛

1∕𝛼
)
−𝛼P(𝐾

[0,𝑇−𝛿]

max = 𝑘)

=
𝛿𝓁

𝑛

𝜀𝛼𝑛
=

𝛿E[𝑊
𝑛
]

𝜀𝛼

(176)

Substituting this into (175) yields

lim
𝛿↘0

P(𝜅
[0,𝑇]
max > 𝜅

[0,𝑇−𝛿]

max + 𝜀) = lim
𝛿↘0

lim
𝑛→∞

𝛿E[𝑊
𝑛
]

𝜀𝛼
= lim

𝛿↘0
𝛿E[𝑊]

𝜀𝛼
= 0
(177)

Condition iii: Tightness of the original process. We want to
show that for any 𝜀, 𝜂 > 0 there exists 𝑛0 ≥ 1 and 𝛿 > 0 such that,
for all 𝑛 ≥ 𝑛0,

P

(

sup
(𝑠,𝑠1 ,𝑠2)∈𝒮𝛿

min
(
|
|
|
|

𝐾
[0,𝑠]
max

𝑛1∕𝛼 −
𝐾

[0,𝑠1 ]

max
𝑛1∕𝛼

|
|
|
|
,

|
|
|
|

𝐾
[0,𝑠2 ]

max
𝑛1∕𝛼 −

𝐾
[0,𝑠]
max

𝑛1∕𝛼

|
|
|
|

)

> 𝜀

)

≤ 𝜂

(178)
Note that

P

(

sup
(𝑠,𝑠1 ,𝑠2)∈𝒮𝛿

min

(|
|
|
|
|
|

𝐾
[0,𝑠]
max

𝑛1∕𝛼
−

𝐾
[0,𝑠1]
max

𝑛1∕𝛼

|
|
|
|
|
|

,

|
|
|
|
|
|

𝐾
[0,𝑠2]
max

𝑛1∕𝛼
−

𝐾
[0,𝑠]
max

𝑛1∕𝛼

|
|
|
|
|
|

)

> 𝜀

)

≤ P
(

∃𝑠 ∈ [𝑠1, 𝑠2], 𝑠2 − 𝑠1 < 𝛿 ∶

min
(
|
|
|
𝐾

[0,𝑠]
max − 𝐾

[0,𝑠1]
max

|
|
|
,
|
|
|
𝐾

[0,𝑠2]
max − 𝐾

[0,𝑠]
max

|
|
|

)

> 𝜀𝑛
1∕𝛼

)

(179)

For the minimum of two terms to be bigger than 𝜀𝑛
1∕𝛼 , both

of them have to be bigger than 𝜀𝑛
1∕𝛼 . As we are dealing with a

non-decreasing random variable, this can only happen if a group
which is bigger by 𝜀𝑛

1∕𝛼 than the so far largest group switches
ON in (𝑠1, 𝑠] and then the same happens in (𝑠, 𝑠2]. Once again we
partition [0, 𝑇] into intervals of length 𝛿 and apply stationarity to
deduce

P

(

sup
(𝑠,𝑠1 ,𝑠2)∈𝒮𝛿

min

(|
|
|
|
|
|

𝐾
[0,𝑠]
max

𝑛1∕𝛼
−

𝐾
[0,𝑠1]
max

𝑛1∕𝛼

|
|
|
|
|
|

,

|
|
|
|
|
|

𝐾
[0,𝑠2]
max

𝑛1∕𝛼
−

𝐾
[0,𝑠]
max

𝑛1∕𝛼

|
|
|
|
|
|

)

> 𝜀

)

≤
𝑇

𝛿
P(𝑇1)

(180)

where 𝑇
𝑙

is the event that the dynamic largest group process

encounters two changes in the 𝑙th time interval of length 𝛿, where
a change means that a bigger than the so far the biggest group
switches ON. We compute

P(𝑇1) ≤ P(𝐾
[0,𝑠]
max > 𝐾

[0,𝑠1]
max + 𝜀𝑛

1∕𝛼
, 𝐾

[0,𝑠2]
max > 𝐾

[0,𝑠]
max + 𝜀𝑛

1∕𝛼
)

∞∑

𝑘=2

∞∑

𝑙=𝑘+1
P(𝑎 ∶ |𝑎| = 𝑙 + 𝜀𝑛

1∕𝛼 switches ON in (𝑠1, 𝑠])P(𝑎 ∶ |𝑎|

> 𝑙 + 𝜀𝑛
1∕𝛼 switches ON in (𝑠, 𝑠2])P(𝐾

[0,𝑇−𝛿]

max = 𝑘)

(181)

From previous points we know that for 𝑙 ≥ 2 and any 𝑠 ∈ [0, 𝑇],
P(𝑎 ∶ |𝑎| > 𝑙 + 𝜀𝑛

1∕𝛼 switches ON in (𝑠, 𝑠 + 𝛿]) ≤ 𝛿𝓁
𝑛
(𝜀𝑛

1∕𝛼
)
−𝛼 .

Substituting this bound in the above calculation yields

P(𝑇1) ≤

∞∑

𝑘=2

∞∑

𝑙=𝑘+1
𝛿𝓁

𝑛
(𝜀𝑛

1∕𝛼
)
−𝛼P(𝑎 ∶ |𝑎|

= 𝑙 + 𝜀𝑛
1∕𝛼 switches ON in (𝑠1, 𝑠])P(𝐾

[0,𝑠1]
max = 𝑘)

= 𝛿𝓁
𝑛
(𝜀𝑛

1∕𝛼
)
−𝛼
≤

∞∑

𝑘=2
P(𝑎 ∶ |𝑎|

= 𝑘 + 𝜀𝑛
1∕𝛼 switches ON in (𝑠, 𝑠2])P(𝐾

[0,𝑠1]
max = 𝑘)

≤
(
𝛿𝓁

𝑛
(𝜀𝑛

1∕𝛼
)
−𝛼

)2
=

𝛿
2
(E[𝑊

𝑛
])

2

𝜀2𝛼

(182)

Note that for 𝑛0 big enough we have that E[𝑊
𝑛
] is close to E[𝑊]

for any 𝑛 ≥ 𝑛0. Hence, if we take 𝛿 <
𝜂𝜀

2𝛼

(E[𝑊])2 the condition will
hold for any pair 𝜂, 𝜀 > 0.
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Appendix A

Proof of the Link Between BGRG
𝒏
(𝒘) and BCM

𝒏
(𝒅) From Van Der

Hofstad, Komjáthy, and Vadon

Here we prove the theorem that lies at the heart of our results—the
fact that, under certain conditions, BGRG

𝑛
(𝒘) and BCM

𝑛
(𝒅) are equiva-

lent. The proof follows in four steps: first, we show that the BGRG
𝑛
(𝒘)

conditioned on its degree sequence is uniform. Second, we show that
BCM

𝑛
(𝒅) conditioned on simplicity is uniform. We also state regularity

conditions that allow us to draw an even stronger link between the two
models. Finally, we conclude that under such circumstances BGRG

𝑛
(𝒘)

and BCM
𝑛
(𝒅) are equivalent.

A.1 | BGRG
𝒏
(𝒘) Conditioned on Degree Sequence is

Uniform

We adapt the derivation of a similar result for GRG
𝑛
(𝒘) (see [22, Section

6.6]). Note that BGRG
𝑛
(𝒘) is entirely determined by the group activity,

that is, if we know which group is active we automatically know which
vertices are in it. Hence, we can encode the probability of BGRG

𝑛
(𝒘) tak-

ing a particular form via a sequence of indicator random variables: recall
from Section 2.1 that we let 𝑥 = (𝑥

𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
be a sequence of 0s and 1s,

and 𝑋 = (𝑋
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
be a sequence of independent random variables

describing the existence of particular groups, that is,

P(𝑋
𝑎
= 1) = 1 − P(𝑋

𝑎
= 0) = 𝜋

𝑎

ON (A1)

Further, recall that we denote

𝑑
(𝑙)

𝑖
(𝑋) =

∑

𝑎∈∪
𝑘≥2[𝑛]𝑘∶𝑎∋𝑖

𝑋
𝑎
, and 𝑑

(𝑟)

𝑎
(𝑋) = |𝑎| ⋅ 𝑋

𝑎 (A2)

Analogously, 𝑑
(𝑙)

𝑖
(𝑥) =

∑
𝑎∈∪

𝑘≥2[𝑛]𝑘∶𝑎∋𝑖
𝑥
𝑎
, 𝑑

(𝑟)

𝑎
(𝑥) = |𝑎| ⋅ 𝑥

𝑎
. Then, we

have the following identification of the law of BGRG
𝑛
(𝒘):

Proposition A.1. (BGRG
𝑛
(𝒘) as a function of left- and right-degrees.).

The probability that the sequence 𝑋 = (𝑋
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
takes a form 𝑥 =

(𝑥
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
can be expressed as a function of left- and right-degree

sequences (𝒅
(𝑙)
, 𝒅

(𝑟)
) = ((𝑑

(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
):

P(𝑋 = 𝑥) = 𝐻((𝑑
(𝑙)
(𝑥), 𝑑

(𝑟)
(𝑥)))) ⋅

(
∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

(1 + 𝜆
𝑎

OFF)

)−1

(A3)

where 𝐻 satisfies

𝐻((𝑑
(𝑙)
(𝑥), 𝑑

(𝑟)
(𝑥)))) =

∏

𝑖∈[𝑛]

𝑤
𝑑
(𝑙)

𝑖
(𝑥)

𝑖

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

𝑓(𝑑
(𝑟)

𝑎
(𝑥))

𝓁
𝑑
(𝑟)

𝑎
(𝑥)(1− 1

|𝑎|
)

𝑛

(A4)

Proof. Taking 𝑋 = (𝑋
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
and 𝑥 = (𝑥

𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
as above, we

obtain
P(𝑋 = 𝑥) =

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

(𝜋
𝑎

ON)
𝑥
𝑎 (1 − 𝜋

𝑎

ON)
1−𝑥

𝑎

=

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

⎛
⎜
⎜
⎝

∏

𝑖∈𝑎

𝑓(|𝑎|)
1
|𝑎| 𝑤

𝑖

𝓁
|𝑎|−1
|𝑎|

𝑛

⎞
⎟
⎟
⎠

𝑥
𝑎

×

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

1
1 +

𝑓(|𝑎|)
∏

𝑖∈𝑎
𝑤

𝑖

𝓁|𝑎|−1
𝑛

(A5)

Note that
∏

𝑖∈𝑎
𝑓(|𝑎|)𝑤

𝑖

𝓁|𝑎|−1
𝑛

= 𝜆
𝑎

OFF and hence we can abbreviate

P(𝑋 = 𝑥) =

⎛
⎜
⎜
⎝

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

(1 + 𝜆
𝑎

OFF)

⎞
⎟
⎟
⎠

−1

×

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

(
∏

𝑖∈𝑎

𝑤
𝑖

)𝑥
𝑎
(

𝑓(|𝑎|)

𝓁|𝑎|−1
𝑛

)𝑥
𝑎

(A6)

We observe that

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

(
∏

𝑖∈𝑎

𝑤
𝑖

)𝑥
𝑎

=

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

∏

𝑖∈𝑎

𝑤
𝑥
𝑎

𝑖
=

∏

𝑖∈[𝑛]

∏

𝑎∶𝑎∋𝑖

𝑤
𝑥
𝑎

𝑖

=

∏

𝑖∈[𝑛]

𝑤

∑

𝑎∈∪
𝑘≥2 [𝑛]

𝑘
∶𝑎∋𝑖

𝑥
𝑎

𝑖
=

∏

𝑖∈[𝑛]

𝑤
𝑑
(𝑙)

𝑖
(𝑥)

𝑖

(A7)

is a function of the left-degrees. Similarly, extending the definition of the
function of group-size distribution by fixing 𝑓(0) = 1,

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

(
𝑓(|𝑎|)

𝓁|𝑎|−1
𝑛

)

𝑥
𝑎 =

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

(𝑓(|𝑎|))𝑥𝑎

𝓁(|𝑎|−1)𝑥
𝑎

𝑛

=

∏

𝑎∈∪
𝑘≥2[𝑛]𝑘

𝑓(𝑑
(𝑟)

𝑎
(𝑥))

𝓁
𝑑
(𝑟)

𝑎
(𝑥)(1− 1

|𝑎|
)

𝑛

(A8)

is a function of the right-degrees, as 𝑑
(𝑟)

𝑎
(𝑥) = |𝑎| ⋅ 𝑥

𝑎
. After substituting

(A7) and (A8) into (A6) the claim follows. ◽

Recall the way of prescribing the double degree sequence described in
Section 2. Given Proposition A.1 it is not difficult to show that the static
bipartite graph conditioned on its degree sequence in such a way is uni-
form over all simple bipartite graphs with given degree sequence, as stated
in Theorem 2.1:
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Proof of Theorem 2.1. With 𝑥 = (𝑥
𝑎
)
𝑎∈∪

𝑘≥2[𝑛]𝑘
satisfying 𝑑

(𝑙)

𝑖
(𝑥) = 𝑑

(𝑙)

𝑖
for

all 𝑖 ∈ [𝑛] and 𝑑
(𝑟)

𝑗
(𝑥) = 𝑘 for 𝑗 ∈ [𝑠𝑘−1, 𝑠𝑘) and 0 otherwise, we can write

P
(

𝑋 = 𝑥|𝑑
(𝑙)

𝑖
(𝑋) = 𝑑

(𝑙)

𝑖
∀𝑖 ∈ [𝑛], 𝑑

(𝑟)

𝑗
(𝑋) = 𝑘∀𝑗 ∈ [𝑠

𝑘−1, 𝑠𝑘)
)

=
P(𝑋 = 𝑥)

P(𝑑
(𝑙)

𝑖
(𝑋) = 𝑑

(𝑙)

𝑖
∀𝑖 ∈ [𝑛], 𝑑

(𝑟)

𝑗
(𝑋) = 𝑘∀𝑗 ∈ [𝑠𝑘−1, 𝑠𝑘))

=
P(𝑋 = 𝑥)

∑
{𝑦∶𝑑

(𝑙)

𝑖
(𝑦)=𝑑

(𝑙)

𝑖
∀𝑖∈[𝑛],𝑑

(𝑟)

𝑗
(𝑦)=𝑘∀𝑗∈[𝑠𝑘−1 ,𝑠𝑘 )}

P(𝑋 = 𝑦)

=
𝐺(𝑎)

−1
𝐻((𝑑

(𝑙)
(𝑥), 𝑑

(𝑟)
(𝑥)))

∑
{𝑦∶𝑑

(𝑙)

𝑖
(𝑦)=𝑑

(𝑙)

𝑖
∀𝑖∈[𝑛],𝑑

(𝑟)

𝑗
(𝑦)=𝑘∀𝑗∈[𝑠𝑘−1 ,𝑠𝑘 )}

𝐺(𝑎)−1𝐻((𝑑(𝑙)(𝑦), 𝑑(𝑟)(𝑦))

=
𝐻((𝑑

(𝑙)
, 𝑑

(𝑟)
))

∑
{𝑦∶𝑑

(𝑙)

𝑖
(𝑦)=𝑑

(𝑙)

𝑖
∀𝑖∈[𝑛],𝑑

(𝑟)

𝑗
(𝑦)=𝑘∀𝑗∈[𝑠𝑘−1 ,𝑠𝑘 )}

𝐻((𝑑(𝑙), 𝑑(𝑟)))

=
1

#{𝑦 ∶ 𝑑
(𝑙)

𝑖
(𝑦) = 𝑑

(𝑙)

𝑖
∀𝑖 ∈ [𝑛], 𝑑

(𝑟)

𝑗
(𝑦) = 𝑘∀𝑗 ∈ [𝑠𝑘−1, 𝑠𝑘)}

(A9)

which means that the distribution is uniform over all bipartite graphs
with the prescribed left- and right-degree sequences.

A.2 | Bipartite Graph With Communities Conditioned on
Simplicity is Uniform

Note that BCM
𝑛
(𝒅) from [14] does not have a community structure.

Hence, we prove the equivalence between BGRG
𝑛
(𝒘) and BCM

𝑛
(𝒅) with

complete communities. Before proving the main result, that is, the fact
that the bipartite configuration model is uniform given simplicity, we
need an auxiliary proposition (which is analogous to a similar result for
CM

𝑛
(𝒅)—see [22, Proposition 7.7]):

Proposition A.2. (The law of BCM
𝑛
(𝒅)). Denote by 𝐺 = (𝑥

𝑖𝑗
)
𝑖∈[𝑛],𝑗∈[𝑀]

a bipartite multigraph on left-vertices 𝑖 ∈ [𝑛] and right-vertices 𝑗 ∈ [𝑀],
such that 𝑑

(𝑙)

𝑖
=

∑
𝑗∈[𝑀]

𝑥
𝑖𝑗

and 𝑑
(𝑟)

𝑗
=

∑
𝑖∈[𝑛]

𝑥
𝑖𝑗

, where 𝑥
𝑖𝑗

is the number
of edges between 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑀]. Then,

P(BCM
𝑛
(𝒅) = 𝐺) =

1
ℎ
𝑛
!

∏
𝑖∈[𝑛]

𝑑
(𝑙)

𝑖
!
∏

𝑗∈[𝑀]
𝑑
(𝑟)

𝑗
!

∏
𝑖∈[𝑛],𝑗∈[𝑀]

𝑥
𝑖𝑗
!

(A10)

with ℎ
𝑛
=

∑
𝑖∈[𝑛]

𝑑
(𝑙)

𝑖
=

∑
𝑗∈[𝑀]

𝑑
(𝑟)

𝑗
. By 𝒅 in BCM

𝑛
(𝒅) we mean a double

degree sequence (𝒅
(𝑙)
, 𝒅

(𝑟)
) = ((𝑑

(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

).

Remark A.1. Note that [13, (2.38)] yields the same formula as (A10).
However, the authors of [13] deliver this result in a form of a remark,
giving justification rather than formal proof. We provide a formal proof.

Proof. We start by computing the number of all possible match-
ings between the left and right sides. Imagine we want to assign a
right-half-edge to every left-half-edge uniformly at random. For the first
fixed left-half-edge we have ℎ

𝑛
choices of available right-half-edges. For

the second left-half-edge, ℎ
𝑛
− 1 choices, and so on. It is not hard to see

that the number of all such matchings is ℎ
𝑛
!. Hence,

P(BCM
𝑛
(𝒅) = 𝐺) =

1
ℎ
𝑛
!
#𝑁(𝐺) (A11)

where 𝑁(𝐺) is the number of configurations that, after identifying the
vertices, result in the multigraph 𝐺. Note that permuting half-edges inci-
dent to vertices will give rise to the same pairs of left- and right-vertices,
hence the same multigraph 𝐺, but yet, when it comes to half-edges,
it is a different configuration. The number of such permutations is
∏

𝑖∈[𝑛]
𝑑
(𝑙)

𝑖
! ⋅

∏
𝑗∈[𝑀]

𝑑
(𝑟)

𝑗
!. However, some of these permutations yield the

same half-edge pairings. If two half-edges of the left-vertex 𝑖 ∈ [𝑛] are
paired to two half-edges of the right-vertex 𝑗 ∈ [𝑀] and we permute all
of them, we will have the same half-edges being matched again. Thus, we
divide by

∏
𝑖∈[𝑛],𝑗∈[𝑀]

𝑥
𝑖𝑗
! to compensate for the “double-counting” caused

by multiple connections. ◽

Using this result we can prove the main theorem of the section (which is
an adaptation of a similar result for CM

𝑛
(𝒅)—see [22, Proposition 7.15]):

Proof of Theorem 2.2. Since, by (A10), P(BCM
𝑛
(𝒅) = 𝐺) is the

same for every bipartite simple graph 𝐺, also conditional probabil-
ity P(BCM

𝑛
(𝒅) = 𝐺|BCM

𝑛
(𝒅)is simple) is the same for every bipartite

simple graph 𝐺. Hence, for any bipartite degree sequence (𝒅
(𝑙)
, 𝒅

(𝑟)
) =

((𝑑
(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

) and conditionally on the event {BCM
𝑛
(𝒅) is a

bipartite simple graph}, BCM
𝑛
(𝒅) is a uniform bipartite simple graph

with bipartite degree sequence (𝒅
(𝑙)
, 𝒅

(𝑟)
) = ((𝑑

(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

).

A.3 | Relation Between BGRG
𝒏
(𝒘) and BCM

𝒏
(𝒅)

Thanks to Theorems 2.1 and 2.2 we can show that the static bipartite
GRG and the bipartite configuration model under certain conditions
yield a certain graph 𝐺 with the same probability. However, as we men-
tioned in the proof overview section, if we assume a few regularity condi-
tions on the degree sequences, we can deduce a stronger link determin-
ing when certain events happen with high probability for BCM

𝑛
(𝒅) and

BGRG
𝑛
(𝒘). These necessary regularity conditions are stated in Section 2,

see Condition 2.1. If we assume Condition 2.1 for BCM
𝑛
(𝒅), then the fol-

lowing is a natural consequence of Theorem 2.2 (analogously to a similar
result for CM

𝑛
(𝒅)—see [22, Corollary 7.17]):

Corollary A.1. (Uniform graphs with given degree sequence and
BCM

𝑛
(𝒅)). Assume that (𝒅

(𝑙)
, 𝒅

(𝑟)
) = ((𝑑

(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

) satisfies
Condition 2.1. Then, an event 

𝑛
occurs with high probability for a

uniform simple bipartite random graph with degrees 𝒅 = (𝒅
(𝑙)
, 𝒅

(𝑟)
) =

((𝑑
(𝑙)

𝑖
)
𝑖∈[𝑛]

, (𝑑
(𝑟)

𝑗
)
𝑗∈[𝑀]

) when it occurs with high probability for BCM
𝑛
(𝒅).

Proof. Let UG
𝑛
(𝒅) denote a uniform simple bipartite random graph

with degrees 𝒅 = (𝒅
(𝑙)
, 𝒅

(𝑟)
). Let 

𝑛
be a subset of multi-graphs such that

lim
𝑛→∞

P(BCM
𝑛
(𝒅) ∈  𝑐

𝑛
) = 0, where, as previously (see Section 2.5), the

superscript “𝑐” denotes a complement. We need to prove that then also
lim

𝑛→∞
P(UG

𝑛
(𝒅) ∈  𝑐

𝑛
) = 0. By Theorem 2.2,

P((UG
𝑛
(𝒅) ∈ 

𝑐

𝑛
) = P(BCM

𝑛
(𝒅) ∈ 

𝑐

𝑛
|BCM

𝑛
(𝒅) is simple)

=

P(BCM
𝑛
(𝒅) ∈  𝑐

𝑛
,BCM

𝑛
(𝒅) is simple)

P(BCM
𝑛
(𝒅) is simple)

≤
P(BCM

𝑛
(𝒅) ∈  𝑐

𝑛
)

P(BCM
𝑛
(𝒅) is simple)

(A12)

By assumption we have that lim
𝑛→∞

P(BCM
𝑛
(𝒅) ∈  𝑐

𝑛
) = 0. Moreover,

by [52, Theorem 1.10 (1.45)], for which the conditions are satisfied by
Condition 2.1, it follows

lim inf
𝑛→∞

P(BCM
𝑛
(𝒅) is simple) > 0 (A13)

so that P((UG
𝑛
(𝒅) ∈  𝑐

𝑛
) → 0. ◽

Now we can prove the final result on the link between the two models
(which is analogous to a similar result for GRG

𝑛
(𝒘) and CM

𝑛
(𝒅)—see

[22, Theorem 7.18]):

Proof of Theorem 2.3. Equality in (44) follows from Theorems 2.1 and 2.2
for every simple bipartite graph 𝐺 with degree sequence 𝒅. Indeed, these
results imply that BGRG

𝑛
(𝒘) conditionally on 𝑫 = 𝒅 as well as BCM

𝑛
(𝒅)

conditionally on being simple are uniform simple random graphs with
degree sequence 𝒅. Further, by (44) we have that

P(BGRG
𝑛
(𝒘) ∈ 

𝑛
|𝑫 = 𝒅)

= P(BCM
𝑛
(𝒅) ∈ 

𝑛
|BCM

𝑛
(𝒅) simple)

We rewrite

P(BGRG
𝑛
(𝒘) ∈ 

𝑐

𝑛
) = E[P(BGRG

𝑛
(𝒘) ∈ 

𝑐

𝑛
|𝑫)]

= E[P(BCM
𝑛
(𝑫) ∈ 

𝑐

𝑛
|BCM

𝑛
(𝑫) simple)]

≤ E
[ P

𝑛
(BCM

𝑛
(𝑫) ∈  𝑐

𝑛
)

P
𝑛
(BCM

𝑛
(𝑫) simple)

∧ 1
]

(A14)
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where E is the expectation w.r.t. the degree sequence 𝑫 and P
𝑛

stands for
the conditional law given the degrees 𝑫. We assumed that P(BCM

𝑛
(𝑫) ∈

 𝑐

𝑛
)

P
−−→ 0. Since 𝑫 satisfies Condition 2.1, by [52, Theorem 1.10 (1.45)] it

follows
lim inf
𝑛→∞

P(BCM
𝑛
(𝑫) is simple) > 0 (A15)

Hence, by the dominated convergence theorem, we conclude that
P(BGRG

𝑛
(𝒘) ∈  𝑐

𝑛
) → 0.

Appendix B

Regularity Conditions of the Static Bipartite Graph and
Consequences

Theorem 2.3 shows that if the degree sequences of BCM
𝑛
(𝒅) and

BGRG
𝑛
(𝒘) satisfy Condition 2.1a,b, then if some event 

𝑛
happens with

high probability for BCM
𝑛
(𝒅), it also happens with high probability for

BGRG
𝑛
(𝒘). The results derived for BCM

𝑛
(𝒅) in [13, 14] hold precisely

under Condition 2.1a,b. Hence, if BGRG
𝑛
(𝒘) also satisfies these regular-

ity conditions, we can transfer all the results on the local convergence and
the giant component from [13, 14].

In this section, we show that Condition 1.1 we have assumed implies
that the degree sequence of BGRG

𝑛
(𝒘) satisfies the required conditions.

We will also argue why it is possible to drop Condition 2.1ii. Before pro-
ceeding to the proofs, we state one consequence of Condition 1.1 that we
frequently make use of in the following sections:

Corollary B.1. Condition 1.1a,b imply that max
𝑖∈[𝑛]

𝑤
𝑖
= 𝑜(𝑛) and

Condition 1.1a–c imply that max
𝑖∈[𝑛]

𝑤
𝑖
= 𝑜(

√
𝑛).

Since the above corollary is the same as for the GRG
𝑛
(𝒘), we omit its

proof.

B.1 | Convergence of Left-Degrees in BGRG
𝒏
(𝒘)

Throughout this section we assume Condition 1.1a–c; however, we later
argue that (c) can be lifted. To show the convergence of the left-degrees
in BGRG

𝑛
(𝒘), we first need the following auxiliary result:

Theorem B.1. (Poisson approximation of the number of k-cliques con-
taining a vertex). Let 

𝑘
(𝑖) denote the number of groups of size 𝑘 containing

vertex 𝑖 ∈ [𝑛]. There exists a coupling (̂
𝑘
(𝑖), �̂�

𝑖,𝑘
) of ̂

𝑘
(𝑖)—a random vari-

able with the same distribution as 
𝑘
(𝑖)—and a Poisson random variable

𝑍
𝑖,𝑘

with parameter 𝑘𝑝
𝑘
𝑤

𝑖
, such that

P(�̂�
𝑘
(𝑖) ≠ �̂�

𝑖,𝑘
) ≤

2(𝑘(𝑘 − 1)𝑝
𝑘
)

2
𝑤

2
𝑖

𝓁
𝑛

(
𝑘 − 1
𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘−1

(B1)

Proof. We adapt the proof of a similar result for GRG
𝑛
(𝒘) (see [22,

Theorem 6.7]). Note that


𝑘
(𝑖) =

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

1
{𝑎 is ON} (B2)

Hence, 
𝑘
(𝑖) is a sum of independent Bernoulli random variables and by

[14, Theorem 2.10] we know that there exists a Poisson random variable
�̂�

𝑖,𝑘
with parameter

𝜆
𝑖,𝑘

=

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

𝜋
𝑎

ON (B3)

and a random variable �̂�
𝑘
(𝑖) with the same distribution as 

𝑘
(𝑖), such that

P(�̂�
𝑘
(𝑖) ≠ �̂�

𝑖,𝑘
) ≤

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

(𝜋
𝑎

ON)
2

(B4)

We have

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

(𝜋
𝑎

ON)
2
=

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

(
𝑘!𝑝

𝑘
𝑤

𝑖

∏
𝑗∈𝑎,𝑗≠𝑖

𝑤
𝑗

𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑖

∏
𝑗∈𝑎,𝑗≠𝑖

𝑤
𝑗

)2

≤ (𝑘!𝑝
𝑘
)

2
𝑤

2
𝑖

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖

(∏
𝑗∈𝑎,𝑗≠𝑖

𝑤
𝑗

𝓁𝑘−1
𝑛

)2

≤ (𝑘!𝑝
𝑘
)

2
𝑤

2
𝑖

(
∑

𝑗∈[𝑛]
𝑤

2
𝑗
)
𝑘−1

(𝑘 − 1)!(𝓁2
𝑛
)𝑘−1

=

(𝑘 − 1)!(𝑘𝑝
𝑘
)

2
𝑤

2
𝑖

𝓁𝑘−1
𝑛

(E[𝑊
2
𝑛
])

𝑘−1

(E[𝑊
𝑛
])𝑘−1

(B5)

where we have used (82) similarly as in Section 3.2. Let 𝜀
𝑖,𝑘

= 𝑘𝑝
𝑘
𝑤

𝑖
−

𝜆
𝑖,𝑘
≥ 0. Take �̂�

𝑖,𝑘
∼ Poi(𝜀

𝑖,𝑘
) and write �̂�

𝑖,𝑘
= �̂�

𝑖,𝑘
+ �̂�

𝑖,𝑘
. By the Markov

inequality,

P(�̂�
𝑖,𝑘
≠ �̂�

𝑖,𝑘
) = P(�̂�

𝑖,𝑘
≠ 0) = P(�̂�

𝑖,𝑘
≥ 1) ≤ E[�̂�

𝑖,𝑘
] = 𝜀

𝑖,𝑘
(B6)

We note that

𝜀
𝑖,𝑘

= 𝑘𝑝
𝑘
𝑤

𝑖
− 𝜆

𝑖,𝑘
=

𝑘!𝑝
𝑘
𝑤

𝑖

(𝑘 − 1)!
⋅ 1 −

∑

𝑎∈[𝑛]
𝑘≥2∶𝑎∋𝑖

𝜋
𝑎

ON

=
𝑘!𝑝

𝑘
𝑤

𝑖

(𝑘 − 1)!
∑

𝑗1 , . . . ,𝑗𝑘−1∈[𝑛]

𝑤
𝑗1
· · · 𝑤

𝑗
𝑘−1

𝓁𝑘−1
𝑛

+ 𝑜(1)

−

∑

𝑗1<···<𝑗
𝑘−1∈[𝑛]

𝑘!𝑝
𝑘
𝑤

𝑖
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘−1

𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑖
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘−1

=

∑

𝑗1<···<𝑗
𝑘−1∈[𝑛]

𝑘!𝑝
𝑘
𝑤

𝑖
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘−1

×

(

1
𝓁𝑘−1
𝑛

−
1

𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑖
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘−1

)

+ 𝑜(1)

=

∑

𝑗1<···<𝑗
𝑘−1∈[𝑛]

(𝑘!𝑝
𝑘
)

2
𝑤

2
𝑖
𝑤

2
𝑗1
· · · 𝑤

2
𝑗
𝑘−1

𝓁𝑘−1
𝑛

(𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑖
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘−1

)
+ 𝑜(1)

≤

∑

𝑗1<···<𝑗
𝑘−1∈[𝑛]

(𝑘!𝑝
𝑘
)

2
𝑤

2
𝑖
𝑤

2
𝑗1
· · · 𝑤

2
𝑗
𝑘−1

𝓁2(𝑘−1)
𝑛

+ 𝑜(1)

≤
(𝑘 − 1)!(𝑘𝑝

𝑘
)

2
𝑤

2
𝑖

𝓁𝑘−1
𝑛

(
∑

𝑗∈[𝑛]
𝑤

2
𝑗
)
𝑘−1

𝓁𝑘−1
𝑛

+ 𝑜(1)

(B7)

where we have again used (82). Using the fact that 𝑘! ≤ 𝑘
𝑘 this yields

P(�̂�
𝑘
(𝑖) ≠ �̂�

𝑖,𝑘
) ≤ P(�̂�

𝑘
(𝑖) ≠ �̂�

𝑖,𝑘
) + P(�̂�

𝑖,𝑘
≠ �̂�

𝑖,𝑘
)

≤
2(𝑘 − 1)!(𝑘𝑝

𝑘
)

2
𝑤

2
𝑖

𝓁𝑘−1
𝑛

(
∑

𝑗∈[𝑛]
𝑤

2
𝑗
)
𝑘−1

𝓁𝑘−1
𝑛

+ 𝑜(1)

≤ 2(𝑘(𝑘 − 1)𝑝
𝑘
)

2
(

𝑘 − 1
𝓁
𝑛

)𝑘−2
𝑤

2
𝑖

𝓁
𝑛

(
E[𝑊

2
𝑛
]

E[𝑊
𝑛
]

)𝑘−1

+ 𝑜(1)

(B8)

which proves the desired result. ◽

Thanks to the coupling derived above we conclude that the degree of a
uniformly chosen left-vertex converges:

Theorem B.2. (Left-degree in bipartite graph BGRG
𝑛
(𝒘)). Let 𝐷

(𝑙)

𝑛

denote the degree of a uniformly chosen left-vertex in BGRG
𝑛
(𝒘). Then, as

𝑛 → ∞,
𝐷

(𝑙)

𝑛

d
−−→𝐷

(𝑙) (B9)

where 𝐷
(𝑙) is a mixed-Poisson variable with mixing parameter 𝑊𝜇, with

𝜇 =
∑

𝑘≥2 𝑘𝑝𝑘
.
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Proof. We adapt the proof of a similar result for GRG
𝑛
(𝒘) (see [22,

Corollary 6.9]). We have that 𝑑(𝑙)

𝑖
=

∑∞

𝑘=2𝑘(𝑖) for any vertex 𝑖 ∈ [𝑛]. Fix
𝑏 and consider a truncated degree 𝑑

(𝑙),𝑏

𝑖
=

∑𝑏

𝑘=2𝑘(𝑖). We know from
Theorem B.1 and the fact that max

𝑖∈[𝑛]
𝑤

𝑖
= 𝑜(

√
𝑛) (Corollary B.1), that

for all 𝑘 ∈ [2, 𝑏], 
𝑘
(𝑖) is close in distribution to a Poisson variable with

parameter 𝑘𝑝
𝑘
𝑤

𝑖
. Hence, for a uniformly chosen vertex 𝑜

𝑛
from [𝑛], the

number of groups of size 𝑘 containing this vertex, for all 𝑘 ∈ [2, 𝑏], is close
to a Poisson variable with parameter 𝑘𝑝

𝑘
𝑤

𝑜
𝑛

, where 𝑤
𝑜
𝑛

is the weight of
a uniformly chosen vertex. Such a variable follows a mixed-Poisson dis-
tribution with mixing distribution 𝑤

𝑜
𝑛

, and 𝑤
𝑜
𝑛

is distributed like 𝑊
𝑛

.
We know that a mixed-Poisson random variable converges to a limiting
mixed-Poisson random variable when the mixing distribution converges.
Since we have assumed convergence of 𝑊

𝑛
to a limiting variable 𝑊 in

Condition 1.1, it follows that for all 𝑘 ∈ [2, 𝑏], 
𝑘
(𝑜

𝑛
) converges to a Pois-

son random variable with parameter 𝑘𝑝
𝑘
𝑊. Thus, the truncated 𝐷

(𝑙),𝑏

𝑛
has

the same distribution as the sum over 𝑘 ∈ [2, 𝑏] of independent Poisson
variables with parameters 𝑘𝑝

𝑘
𝑊 and for 𝑏 large enough converges to a

Poisson variable with parameter 𝑊𝜇 as 𝑛 → ∞. We will now show that
the probability that any 

𝑘
(𝑜

𝑛
) with 𝑘 > 𝑏 is positive vanishes for 𝑏 large

enough. By the Markov inequality,

lim sup
𝑛

P

(
∑

𝑘≥𝑏


𝑘
(𝑜

𝑛
) ≥ 1

)

≤ lim sup
𝑛

E

[
∑

𝑘≥𝑏


𝑘
(𝑜

𝑛
)

]

≤ lim sup
𝑛

E[𝑊
𝑛
]

∑

𝑘≥𝑏

𝑘𝑝
𝑘
= 𝑜(1)

(B10)

for 𝑏 → ∞, since we have assumed
∑∞

𝑘=2𝑘𝑝𝑘
< ∞ and 𝑊

𝑛
→ 𝑊 as 𝑛 →

∞. Since therefore, with high probability, the only contribution to 𝐷
(𝑙)

𝑛

comes from the truncated 𝐷
(𝑙)𝑏

𝑛
, we conclude that 𝐷(𝑙)

𝑛
also converges to a

Poisson variable with parameter 𝑊𝜇. ◽

Below we use the second-moment method to show that also the expected
degree of a uniformly chosen left-vertex converges:

Theorem B.3. Let 𝐷(𝑙)

𝑛
denote the degree of a uniformly chosen left-vertex

in BGRG
𝑛
(𝒘). Then, as 𝑛 → ∞,

E[𝐷
(𝑙)

𝑛
|𝐺

𝑛
]

P
−−→𝜇E[𝑊] (B11)

Proof. Note that E[𝐷
(𝑙)

𝑛
|𝐺

𝑛
] =

1
𝑛

∑
𝑖∈[𝑛]

𝑑
(𝑙)

𝑖
is the same as

1
𝑛

∑
𝑎∈∪

𝑘≥2[𝑛]𝑘
𝑑
(𝑟)

𝑎
=

1
𝑛

∑
𝑎∈∪

𝑘≥2[𝑛]𝑘
|𝑎| ⋅ 1

{𝑎 is ON}
, which is a sum of inde-

pendent variables. To avoid more assumptions on the moments of the
group-size distribution, we fix a sequence 𝑏

𝑛
→ ∞ as 𝑛 → ∞ and use a

truncation with respect to the group size, that is,

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|1
{𝑎 is ON}

=

𝑏
𝑛∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|1
{𝑎 is ON}

+

∞∑

𝑘=𝑏
𝑛
+1

∑

𝑎∈[𝑛]
𝑘

|𝑎|1
{𝑎 is ON}

(B12)

For further notational convenience, denote 𝑤
𝑎
=

∏
𝑖∈𝑎

𝑤
𝑖
. We compute

E

[

1
𝑛

∞∑

𝑘=𝑏
𝑛
+1

∑

𝑎∈[𝑛]
𝑘

|𝑎|1
{𝑎 is ON}

]

=
1
𝑛

∑

𝑘>𝑏
𝑛

𝑘

∑

𝑎∈[𝑛]
𝑘

𝑘!𝑝
𝑘
𝑤

𝑎

𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑎

≤
𝓁
𝑛

𝑛

∑

𝑘>𝑏
𝑛

𝑘𝑝
𝑘
= 𝑜(1)

(B13)

for every 𝑏
𝑛
→ ∞, since we have assumed

∑
𝑘
𝑘𝑝

𝑘
< ∞. Hence, the con-

tribution from groups larger than 𝑏
𝑛

will vanish in probability, that is,

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|1
{𝑎 is ON}

=

𝑏
𝑛∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|1
{𝑎 is ON}

+ 𝑜(1) (B14)

Note that

𝑘!𝑝
𝑘
𝑤

𝑎

𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑎

=
𝑘!𝑝

𝑘
𝑤

𝑎

𝓁𝑘−1
𝑛

−
(𝑘!𝑝

𝑘
)

2
(𝑤

𝑎
)

2

𝓁𝑘−1
𝑛

(𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑎
)

(B15)

Hence,

E

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
(𝑙)

𝑖

]

≤
1
𝑛

𝑏
𝑛∑

𝑘=2
𝑘

∑

𝑎∈[𝑛]
𝑘

𝑘!𝑝
𝑘
𝑤

𝑎

𝓁𝑘−1
𝑛

≤
𝓁
𝑛

𝑛

∞∑

𝑘=2
𝑘𝑝

𝑘

= E[𝑊
𝑛
]𝜇

𝑛→∞

−−−−→E[𝑊]𝜇

(B16)

Further, using the fact that 𝑘! ≤ 𝑘
𝑘 and (82) from Section 3.2,

∑

𝑎∈[𝑛]
𝑘

(𝑘!𝑝
𝑘
)

2
(𝑤

𝑎
)

2

𝓁𝑘−1
𝑛

(𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑎
)
≤

∑

𝑎∈[𝑛]
𝑘

(𝑘!𝑝
𝑘
)

2
(𝑤

𝑎
)

2

(𝓁𝑘−1
𝑛

)2

≤ 𝑘!(𝑝
𝑘
)

2
(
∑

𝑖∈[𝑛]
𝑤

2
𝑖
)
𝑘

𝓁𝑘−2
𝑛
𝓁𝑘

𝑛

= (𝑘𝑝
𝑘
)

2
(

𝑘

𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘
(B17)

and thus

E

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
(𝑙)

𝑖

]

≥
𝓁
𝑛

𝑛

𝑏
𝑛∑

𝑘=2
𝑘𝑝

𝑘

−
1
𝑛

𝑏
𝑛∑

𝑘=2
𝑘(𝑘𝑝

𝑘
)

2
(

𝑘

𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘

≥
𝓁
𝑛

𝑛

𝑏
𝑛∑

𝑘=2
𝑘𝑝

𝑘
−

𝑏
𝑛

𝑛

𝑏
𝑛∑

𝑘=2
(𝑘𝑝

𝑘
)

2
(

𝑏
𝑛

𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘

=
𝓁
𝑛

𝑛

𝑏
𝑛∑

𝑘=2
𝑘𝑝

𝑘
− 𝑜(1)

𝑛→∞

−−−−→E[𝑊]𝜇

(B18)

if we choose 𝑏
𝑛
= 𝑜(𝑛) and since we have assumed 𝜇

(2) =
∑

𝑘
𝑘

2
𝑝
𝑘
<

∞. Using the independence and the fact that the variance of an indi-
cator random variable is smaller than or equal to its expectation, we
compute

Var

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
(𝑙)

𝑖

]

≤
𝓁
𝑛

𝑛2

∞∑

𝑘=2
𝑘

2
𝑝
𝑘
=

E[𝑊
𝑛
]

𝑛

∞∑

𝑘=2
𝑘

2
𝑝
𝑘
= 𝑜(1) (B19)

since we have assumed that
∑∞

𝑘=2𝑘
2
𝑝
𝑘
< ∞. Taking 𝑛 large enough so

that ||
|
E[

1
𝑛

∑
𝑖∈[𝑛]

𝑑
(𝑙)

𝑖
] − 𝜇E[𝑊]

|
|
|
≤

𝜀

2
, by Chebyshev’s inequality

P

(|
|
|
|
|
|

1
𝑛

∑

𝑖∈[𝑛]

𝑑
(𝑙)

𝑖
− 𝜇E[𝑊]

|
|
|
|
|
|

> 𝜀

)

≤ P

(|
|
|
|
|
|

1
𝑛

∑

𝑖∈[𝑛]

𝑑
(𝑙)

𝑖
− E

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
(𝑙)

𝑖

]|
|
|
|
|
|

>
𝜀

2

)

≤
4
𝜀2 Var

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
(𝑙)

𝑖

]

= 𝑜(1)

(B20)

◽

Remark B.1. The proofs above show why our assumptions on the first
and second moment of the group-size distribution in (9) and (10) are nec-
essary.

B.2 | Convergence of Right Degrees in BGRG
𝒏
(𝒘)

We want to show that the degree of a uniformly chosen right-vertex con-
verges. We first need two auxiliary results:
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Theorem B.4. (Convergence of the number of groups of fixed size).
Denote 𝐴

𝑘
= #{𝑎ON ∶ |𝑎| = 𝑘}. For 𝑘 ≥ 2 and as 𝑛 → ∞,

𝐴
𝑘

𝑛

P
−−→𝑝

𝑘
E[𝑊] (B21)

Proof. To prove the desired statement we again use the second-moment
method. We have

𝐴
𝑘
=

∑

𝑎∈[𝑛]
𝑘

1
{group 𝑎 is ON} (B22)

and thus,

E[𝐴
𝑘
] =

∑

𝑎∈[𝑛]
𝑘

𝜋
𝑎

ON =

∑

𝑗1<···<𝑗
𝑘
∈[𝑛]

𝑘!𝑝
𝑘
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘

𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘

(B23)

Using (B15) we arrive at

E
[
𝐴

𝑘

𝑛

]

≤
1

𝑛 ⋅ 𝑘!

∑

𝑗1 , . . . ,𝑗𝑘∈[𝑛]

𝑘!𝑝
𝑘
𝑤

𝑗1
· · · 𝑤

𝑗
𝑘

𝓁𝑘−1
𝑛

=
𝑝
𝑘
𝓁
𝑛

𝑛

×

∑

𝑗1 , . . . ,𝑗𝑘∈[𝑛]

𝑤
𝑗1
· · · 𝑤

𝑗
𝑘

𝓁𝑘

𝑛

= 𝑝
𝑘
E[𝑊

𝑛
] + 𝑜(1) → 𝑝

𝑘
E[𝑊]

as 𝑛 → ∞. Since 𝑘 is fixed, by (B15) and (B17),

E
[
𝐴

𝑘

𝑛

]

≥ 𝑝
𝑘
E[𝑊

𝑛
] −

(𝑘𝑝
𝑘
)

2

𝑛

(
𝑘

𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘

= 𝑝
𝑘
E[𝑊

𝑛
] − 𝑜(1)

(B24)

since we have assumed 𝜇
(2) =

∑
𝑘
𝑘

2
𝑝
𝑘
< ∞. Therefore,

𝑝
𝑘
E[𝑊

𝑛
] − 𝑜(1) ≤ E

[
𝐴

𝑘

𝑛

]

≤ 𝑝
𝑘
E[𝑊

𝑛
] (B25)

Moreover, since 𝐴
𝑘

is a sum of indicator random variables it holds that
Var[𝐴

𝑘
] ≤ E[𝐴

𝑘
], which yields, for all 𝑘 ≥ 2,

Var
(

𝐴
𝑘

𝑛

)

=
1
𝑛2 Var[𝐴

𝑘
] ≤

𝑝
𝑘

E[𝑊
𝑛
]

𝑛
= 𝑜(1) (B26)

Take 𝑛 big enough so that ||
|
E[

𝐴
𝑘

𝑛
] − 𝑝

𝑘
E[𝑊]

|
|
|
≤

𝜀

2
. Then

P
(
|
|
|
|

𝐴
𝑘

𝑛
− 𝑝

𝑘
E[𝑊]

|
|
|
|
> 𝜀

)

≤ P

(
|
|
|
|
|

𝐴
𝑘

𝑛
− E

[
𝐴

𝑘

𝑛

]|
|
|
|
|

>
𝜀

2

)

≤
4
𝜀2 Var

[
𝐴

𝑘

𝑛

]

= 𝑜(1)
◽

Theorem B.5. (Convergence of the groups to vertices ratio). Denote
𝑀

𝑛
= #{𝑎 ∈ [𝑛]

𝑘
∶ 𝑎 is ON}. As 𝑛 → ∞,

𝑀
𝑛

𝑛

P
−−→E[𝑊] (B27)

Proof. We have

𝑀
𝑛
=

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

1
{𝑎 is ON}

=

∞∑

𝑘=2
𝐴

𝑘
=

𝑏
𝑛∑

𝑘=2
𝐴

𝑘
+

∑

𝑘>𝑏
𝑛

𝐴
𝑘

(B28)

where 𝑏
𝑛

is a sequence diverging to infinity as 𝑛 → ∞. Note that, using
(B15),

E

[∑
𝑘>𝑏

𝑛

𝐴
𝑘

𝑛

]

≤ E[𝑊
𝑛
]

∑

𝑘>𝑏
𝑛

𝑝
𝑘
= 𝑜(1) (B29)

for each 𝑏
𝑛
→ ∞. Thus,

𝑀
𝑛
=

𝑏
𝑛∑

𝑘=2
𝐴

𝑘
+ 𝑜P(1) (B30)

Again by (B15),

E
[
𝑀

𝑛

𝑛

]

=

𝑏
𝑛∑

𝑘=2
E
[
𝐴

𝑘

𝑛

]

≤
𝓁
𝑛

𝑛

∞∑

𝑘=2
𝑝
𝑘
= E[𝑊

𝑛
] → E[𝑊] (B31)

and on the other hand, by (B15) and (B17),

E
[
𝑀

𝑛

𝑛

]

≥ E[𝑊
𝑛
]

𝑏
𝑛∑

𝑘=2
𝑝
𝑘
−

1
𝑛

𝑏
𝑛∑

𝑘=2
(𝑘𝑝

𝑘
)

2
(

𝑘

𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘

= E[𝑊
𝑛
]

𝑏
𝑛∑

𝑘=2
𝑝
𝑘
− 𝑜(1)

𝑛→∞

−−−−→E[𝑊]

(B32)

if we choose 𝑏
𝑛
= 𝑜(𝑛). Further, since each 𝐴

𝑘
is a sum of independent

indicators,

1
𝑛2 Var(𝑀

𝑛
) =

1
𝑛2

𝑏
𝑛∑

𝑘=2
Var(𝐴

𝑘
) ≤

1
𝑛2

∞∑

𝑘=2
E[𝐴

𝑘
] ≤

𝓁
𝑛

𝑛2 = 𝑜(1) (B33)

Taking again 𝑛 big enough so that ||
|
E[

𝑀
𝑛

𝑛
] − E[𝑊]

|
|
|
≤

𝜀

2
. Then

P
(
|
|
|
|

𝑀
𝑛

𝑛
− E[𝑊]

|
|
|
|
> 𝜀

)

≤ P

(
|
|
|
|
|

𝑀
𝑛

𝑛
− E

[
𝑀

𝑛

𝑛

]|
|
|
|
|

>
𝜀

2

)

≤
4
𝜀2 Var

(
𝑀

𝑛

𝑛

)

= 𝑜(1)
◽

With the above, we can conclude convergence of the degree of a uniformly
chosen right-vertex:

Theorem B.6. (Convergence of the degree of a uniformly chosen
group). Recall that we denote the degree of a uniformly chosen group
𝑎 ∈ [𝑛]

𝑘≥2 by 𝐷
(𝑟)

𝑛
. As 𝑛 → ∞,

P(𝐷
(𝑟)

𝑛
= 𝑘|𝐺

𝑛
)

P
−−→𝑝

𝑘
(B34)

Proof. Note that P(𝐷
(𝑟)

𝑛
= 𝑘|𝐺

𝑛
) = 𝐴

𝑘
∕𝑀

𝑛
. From Theorems B.4 and B.5

we know that 𝑛
−1

𝐴
𝑘

and 𝑛
−1

𝑀
𝑛

converge in probability, which implies
convergence of the joint vector (𝑛

−1
𝐴

𝑘
, 𝑛

−1
𝑀

𝑛
). Hence, the convergence

of the ratio is guaranteed by the continuous mapping theorem:

𝐴
𝑘

𝑀
𝑛

=
𝐴

𝑘
∕𝑛

𝑀
𝑛
∕𝑛

P
−−→

𝑝
𝑘
E[𝑊]

E[𝑊]
= 𝑝

𝑘
(B35)
◽

It also follows easily that the expected degree of a uniformly chosen
right-vertex converges.

Corollary B.2. (Convergence of the first moment of the degree of a uni-
formly chosen group). It follows from the previous that

E[𝐷
(𝑟)

𝑛
|𝐺

𝑛
]

P
−−→𝜇 (B36)

Proof. Note that

E[𝐷
(𝑟)

𝑛
|𝐺

𝑛
] =

∑∞

𝑘=2
∑

𝑎∈[𝑛]
𝑘

𝑑
(𝑟)

𝑎

𝑀
𝑛

=

∑∞

𝑘=2𝑘𝐴𝑘

𝑀
𝑛

(B37)

It is easy to show by the second-moment method and a suitable trunca-
tion, analogously to the previous results, that

∑∞

𝑘=2𝑘𝐴𝑘
∕𝑛

P
−−→𝜇E[𝑊] and

we already showed that 𝑀
𝑛

𝑛

P
−−→E[𝑊]. The claim follows again thanks to

the joint convergence and continuous mapping theorem. ◽
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B.3 | Convergence of the Degree Distribution in DRIG
𝒏
(𝒘)

Remark B.2. Note that the construction of DRIG
𝑛
(𝒘) allows for multi-

ple edges, as two vertices 𝑖, 𝑗 ∈ [𝑛] might meet in more than one group.
However, as we have argued earlier in Section 1.3, it is easy to show
that it will not happen with high probability in a neighborhood of a uni-
formly chosen vertex and hence is negligible as long as local convergence
is concerned.

B.3.1 | Expected Average Degree

Proof of Theorem 2.5. Write E[𝐷
𝑛
|𝐺

𝑛
] =

1
𝑛

∑
𝑖∈[𝑛]

𝑑
𝑖
, where 𝑑

𝑖
is the

degree of vertex 𝑖 ∈ [𝑛]. Since we want to use the second-moment method
and 𝑑

𝑖
, 𝑑

𝑗
for some 𝑖, 𝑗 ∈ [𝑛] are not independent, it is more conve-

nient to express E[𝐷
𝑛
|𝐺

𝑛
] in terms of groups, which are independent.

Note that
∑

𝑖∈[𝑛]
𝑑
𝑖

is nothing else than twice the number of all edges in
DRIG

𝑛
(𝒘). As DRIG

𝑛
(𝒘) is constructed from BGRG

𝑛
(𝒘), it is a collec-

tion of 𝑘-cliques, whose ON or OFF status is determined by the ON and
OFF processes of groups 𝑎 ∈ ∪

𝑛≥2[𝑛]𝑘 present in BGRG
𝑛
(𝒘). Hence,

∑

𝑖∈[𝑛]

𝑑
𝑖
=

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

2 ⋅
|𝑎|(|𝑎| − 1)

2
1

{𝑎 is ON}

=

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)1
{𝑎 is ON}

(B38)

since the number of edges in a 𝑘-clique equals 𝑘(𝑘 − 1)∕2. To avoid
more assumptions on the moments of the group-size distribution, we
once more fix a sequence 𝑏

𝑛
→ ∞ as 𝑛 → ∞ and use the truncation with

respect to the group size, that is,

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)1
{𝑎 is ON}

=

𝑏
𝑛∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)1
{𝑎 is ON}

+

∑

𝑘>𝑏
𝑛

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)1
{𝑎 is ON}

(B39)

Once again denote 𝑤
𝑎
=

∏
𝑖∈𝑎

𝑤
𝑖
. Using upper bounds derived in previ-

ous proofs we compute

E

[

1
𝑛

∑

𝑘>𝑏
𝑛

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)1
{𝑎 is ON}

]

=
1
𝑛

∑

𝑘>𝑏
𝑛

𝑘(𝑘 − 1)
∑

𝑎∈[𝑛]
𝑘

𝑘!𝑝
𝑘
𝑤

𝑎

𝓁𝑘−1
𝑛

+ 𝑘!𝑝
𝑘
𝑤

𝑎

≤
𝓁
𝑛

𝑛

∑

𝑘>𝑏
𝑛

𝑘(𝑘 − 1)𝑝
𝑘
= 𝑜(1)

(B40)

for every 𝑏
𝑛
→ ∞, since we have assumed that

∑
𝑘
𝑘

2
𝑝
𝑘
< ∞. Hence, the

contribution from groups larger than 𝑏
𝑛

will vanish in probability, that is,
∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)1
{𝑎 is ON}

=

𝑏
𝑛∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)1
{𝑎 is ON}

+ 𝑜P(1)

(B41)

Thus, again applying previously derived upper bounds,

E

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
𝑖

]

=
1
𝑛

𝑏
𝑛∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|(|𝑎| − 1)E[1
{𝑎 is ON}

]

+ 𝑜(1) = 1
𝑛

𝑏
𝑛∑

𝑘=2
𝑘(𝑘 − 1)

∑

𝑎∈[𝑛]
𝑘

𝜋
𝑎

ON + 𝑜(1)

≤
𝓁
𝑛

𝑛

𝑏
𝑛∑

𝑘=2
𝑘(𝑘 − 1)𝑝

𝑘
+ 𝑜(1) ≤ E[𝑊

𝑛
](𝜇

(2) − 𝜇)

+ 𝑜(1)
𝑛→∞

−−−−→ (𝜇
(2) − 𝜇)E[𝑊]

(B42)

On the other hand, using (B15),

E

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
𝑖

]

≥ E[𝑊
𝑛
]

𝑏
𝑛∑

𝑘=2
𝑘(𝑘 − 1)𝑝

𝑘

−
1
𝑛

𝑏
𝑛∑

𝑘=2
𝑘(𝑘 − 1)(𝑘𝑝

𝑘
)

2
(

𝑘

𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘

≥ E[𝑊
𝑛
]

𝑏
𝑛∑

𝑘=2
𝑘(𝑘 − 1)𝑝

𝑘
−

𝑏
2
𝑛

𝑛

𝑏
𝑛∑

𝑘=2
(𝑘𝑝

𝑘
)

2
(

𝑏
𝑛

𝓁
𝑛

)𝑘−2
(

E[𝑊
2
𝑛
]

E[𝑊
𝑛
]

)𝑘

= E[𝑊
𝑛
]

𝑏
𝑛∑

𝑘=2
𝑘(𝑘 − 1)𝑝

𝑘
− 𝑜(1)

𝑛→∞

−−−−→ (𝜇
(2) − 𝜇)E[𝑊]

(B43)

if we choose 𝑏
𝑛
= 𝑜(𝑛). We now compute the variance:

Var

(

1
𝑛

∑

𝑖∈[𝑛]

𝑑
𝑖

)

=
1
𝑛2

𝑏
𝑛∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|2
(|𝑎| − 1)2Var[1

{𝑎 is ON}
]

≤
1
𝑛2

𝑏
𝑛∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘

|𝑎|2
(|𝑎| − 1)2E[1

{𝑎 is ON}
]

≤
𝓁
𝑛

𝑛2

𝑏
𝑛∑

𝑘=2
𝑘

2
(𝑘 − 1)2

𝑝
𝑘

≤
𝓁
𝑛
𝑏

2
𝑛

𝑛2

𝑏
𝑛∑

𝑘=2
𝑘(𝑘 − 1)𝑝

𝑘
= 𝑜(1)

(B44)

if we choose 𝑏
𝑛
= 𝑜(

√
𝑛). Thus, taking 𝑛 large enough so that

|
|
|
E[

1
𝑛

∑
𝑖∈[𝑛]

𝑑
𝑖
] − (𝜇

(2) − 𝜇)E[𝑊]
|
|
|
≤

𝜀

2
, we obtain

P

(|
|
|
|
|
|

1
𝑛

∑

𝑖∈[𝑛]

𝑑
𝑖
− (𝜇

(2) − 𝜇)E[𝑊]

|
|
|
|
|
|

> 𝜀

)

≤ P

(|
|
|
|
|
|

1
𝑛

∑

𝑖∈[𝑛]

𝑑
𝑖
− E

[

1
𝑛

∑

𝑖∈[𝑛]

𝑑
𝑖

]|
|
|
|
|
|

>
𝜀

2

)

≤
4
𝜀2 Var

(

1
𝑛

∑

𝑖∈[𝑛]

𝑑
𝑖

)

= 𝑜(1)

B.3.2 | Degree Sequence

Recall from Section 2.2.3 that we defined the degree sequence as

𝑄
(𝑛)

𝑘
=

1
𝑛

∑

𝑖∈[𝑛]

1
{𝑑

𝑖
=𝑘} (B45)

where 𝑑
𝑖

is the degree of vertex 𝑖 ∈ [𝑛] in DRIG
𝑛
(𝒘). We will now prove

Theorem 2.4.

Proof of Theorem 2.4. We adapt the proof of a similar result for GRG
𝑛
(𝒘)

(see [22, Theorem 6.10]). Since (𝑞
𝑘
)
𝑘≥0 is a probability mass function,

∑

𝑘≥0
|𝑄

(𝑛)

𝑘
− 𝑞

𝑘
| = 2𝑑TV(𝑄

(𝑛)
, 𝑞)

P
−−→ 0 (B46)

if and only if max
𝑘≥0 |𝑄

(𝑛)

𝑘
− 𝑞

𝑘
|

P
−−→ 0, where 𝑑TV denotes the total varia-

tion distance. Therefore we have to show that P(max
𝑘≥0 |𝑄

(𝑛)

𝑘
− 𝑞

𝑘
| ≥ 𝜀)

vanishes for every 𝜀 > 0. Note that,

P(max
𝑘≥0

|𝑄
(𝑛)

𝑘
− 𝑞

𝑘
| ≥ 𝜀) ≤

∑

𝑘≥0
P(|𝑄

(𝑛)

𝑘
− 𝑞

𝑘
| ≥ 𝜀) (B47)
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We also have that E[𝑄
(𝑛)

𝑘
] = P(𝐷

𝑛
= 𝑘) = P(

∑∞

𝑙=2(𝑙 − 1)
𝑙
(𝑜

𝑛
) = 𝑘) and

thus, by the previous results (see Theorem B.1) we know that
lim

𝑛→∞
P(𝐷

𝑛
= 𝑘) = 𝑞

𝑘
. Hence, for 𝑛 sufficiently large,

max
𝑘

|E[𝑄
(𝑛)

𝑘
] − 𝑞

𝑘
| ≤

𝜀

2 (B48)

Thus, again for 𝑛 sufficiently large,

P

(

max
𝑘≥0

|𝑄
(𝑛)

𝑘
− 𝑞

𝑘
| ≥ 𝜀) ≤

∑

𝑘≥0
P(|𝑄

(𝑛)

𝑘
− E[𝑄

(𝑛)

𝑘
]| ≥

𝜀

2

)

≤
4
𝜀2

∑

𝑘≥0
Var(𝑄(𝑛)

𝑘
)

(B49)

where the last follows from the Chebyshev inequality. We have

Var(𝑄(𝑛)

𝑘
) ≤

1
𝑛2

∑

𝑖∈[𝑛]

[P(𝑑
𝑖
= 𝑘) − P(𝑑

𝑖
= 𝑘)

2
] +

1
𝑛2

×

∑

𝑖,𝑗∈[𝑛],𝑖≠𝑗

[P(𝑑
𝑖
= 𝑑

𝑗
= 𝑘) − P(𝑑

𝑖
= 𝑘)P(𝑑

𝑗
= 𝑘)]

(B50)

Note that
∑

𝑘≥0

1
𝑛2

∑

𝑖∈[𝑛]

[P(𝑑
𝑖
= 𝑘) − P(𝑑

𝑖
= 𝑘)

2
]

≤

∑

𝑘≥0

1
𝑛2

∑

𝑖∈[𝑛]

P(𝑑
𝑖
= 𝑘) =

1
𝑛

= 𝑜(1)
(B51)

We want to show that the second term in (B50) vanishes too, when
summed overall 𝑘. Note that 𝑑

𝑖
=

∑
𝑎∶𝑎∋𝑖

(|𝑎| − 1)1
{𝑎 is ON}

. Hence, the
correlation between 𝑑

𝑖
and 𝑑

𝑗
is due to groups containing both 𝑖 and 𝑗.

We write

𝑑
𝑖⧵𝑗 =

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖,𝑎∋∕𝑗

(|𝑎| − 1)1
{𝑎 is ON} (B52)

and we define 𝑑
𝑗⧵𝑖 analogously. We also define

𝑑
𝑖,𝑗

=

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖,𝑗

(|𝑎| − 1)1
{𝑎 is ON} (B53)

Then (𝑑
𝑖
, 𝑑

𝑗
) has the same law as (𝑑

𝑖⧵𝑗 + 𝑑
𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
). Now let us

introduce random variable 1̂
{𝑎 is ON}

such that 1̂
{𝑎 is ON}

d
= 1

{𝑎 is ON}
and

1̂
{𝑎 is ON}

is independent of (1
{𝑎 is ON}

)
𝑎∈∪

𝑘≥2[𝑛]𝑘
. Thus,

𝑑
𝑖,𝑗

=

∞∑

𝑘=2

∑

𝑎∈[𝑛]
𝑘
∶𝑎∋𝑖,𝑗

(|𝑎| − 1)1̂
{𝑎 is ON}

d
= 𝑑

𝑖,𝑗 (B54)

and then (𝑑
𝑖⧵𝑗 + 𝑑

𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) are independent random variables with

the same marginals as 𝑑
𝑖
, 𝑑

𝑗
. Hence

P(𝑑
𝑖
= 𝑑

𝑗
= 𝑘) = P((𝑑

𝑖⧵𝑗 + 𝑑
𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) = (𝑘, 𝑘))

P(𝑑
𝑖
= 𝑘)P(𝑑

𝑗
= 𝑘) = P((𝑑

𝑖⧵𝑗 + 𝑑
𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) = (𝑘, 𝑘))

(B55)

Therefore,

P(𝑑
𝑖
= 𝑑

𝑗
= 𝑘) − P(𝑑

𝑖
= 𝑘)P(𝑑

𝑗
= 𝑘)

= P((𝑑
𝑖⧵𝑗 + 𝑑

𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) = (𝑘, 𝑘))

− P((𝑑
𝑖⧵𝑗 + 𝑑

𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) = (𝑘, 𝑘))

≤ P({(𝑑
𝑖⧵𝑗 + 𝑑

𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
)

= (𝑘, 𝑘)} ⧵ {(𝑑
𝑖⧵𝑗 + 𝑑

𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) = (𝑘, 𝑘)})

= P((𝑑
𝑖⧵𝑗 + 𝑑

𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) = (𝑘, 𝑘)

(𝑑
𝑖⧵𝑗 + 𝑑

𝑖,𝑗
, 𝑑

𝑗⧵𝑖 + 𝑑
𝑖,𝑗
) ≠ (𝑘, 𝑘))

(B56)

When the above happens, it must be that 𝑑
𝑖,𝑗
≠ 𝑑

𝑖,𝑗
, so there exists such

𝑎 ∋ 𝑖, 𝑗 that 1
{𝑎 is ON}

≠ 1̂
{𝑎 is ON}

. If then, for some 𝑎, 1̂
{𝑎 is ON}

= 1, then
1

{𝑎 is ON}
= 0 and 𝑑

𝑖⧵𝑗 + 𝑑
𝑖,𝑗

= 𝑘; If 1
{𝑎 is ON}

= 1, then 1̂
{𝑎 is ON}

= 0 and
𝑑
𝑗⧵𝑖 + 𝑑

𝑖,𝑗
= 𝑘 − (|𝑎| − 1). Hence,

P(𝑑
𝑖
= 𝑑

𝑗
= 𝑘) − P(𝑑

𝑖
= 𝑘)P(𝑑

𝑗
= 𝑘)

≤

∑

𝑎∋𝑖,𝑗

P(𝑎 is ON)[P(𝑑
𝑖
= 𝑘) + P(𝑑

𝑗
= 𝑘 − |𝑎| + 1)] (B57)

This yields

∑

𝑘≥0
Var(𝑄(𝑛)

𝑘
) ≤ 𝑜(1) +

∑

𝑘≥0

1
𝑛2

∑

𝑖,𝑗∈[𝑛],𝑖≠𝑗

∑

𝑎∋𝑖,𝑗

P(𝑎 is ON)[P(𝑑
𝑖
= 𝑘)

+ P(𝑑
𝑗
= 𝑘 − |𝑎| + 1)]

≤ 𝑜(1) + 2
𝑛2

∑

𝑖,𝑗∈[𝑛]

∑

𝑎∋𝑖,𝑗

|𝑎|!𝑝|𝑎|𝑤𝑎

𝓁𝑎−1
𝑛

(B58)

where we once again denote 𝑤
𝑎
=

∏
𝑖∈𝑎

𝑤
𝑖
. Since

∑

𝑎∋𝑖,𝑗

|𝑎|!𝑝|𝑎|𝑤𝑎

𝓁𝑎−1
𝑛

=

∞∑

𝑙=2

∑

𝑣1<···<𝑣
𝑙−2

𝑙!𝑝
𝑙
𝑤

𝑖
𝑤

𝑗
𝑤

𝑎

𝓁𝑙−1
𝑛

=

𝑤
𝑖
𝑤

𝑗

𝓁
𝑛

∞∑

𝑙=2
𝑙(𝑙 − 1)𝑝

𝑙

∑

𝑣1 , . . . ,𝑣𝑙−2

𝑤
𝑣1

· · · 𝑤
𝑣
𝑙

𝓁𝑙−2
𝑛

=

𝑤
𝑖
𝑤

𝑗

𝓁
𝑛

(𝜇
(2) − 𝜇)

(B59)

we obtain

∑

𝑘≥0
Var(𝑄(𝑛)

𝑘
) ≤ 𝑜(1) + 2

𝑛2

∑

𝑖,𝑗∈[𝑛]

𝑤
𝑖
𝑤

𝑗

𝓁
𝑛

(𝜇
(2) − 𝜇)

= 𝑜(1) + (𝜇
(2) − 𝜇)

1
𝑛2

∑

𝑖∈[𝑛]

𝑤
2
𝑖

𝓁
𝑛

= 𝑜(1)

+

(𝜇
(2) − 𝜇)E[𝑊

2
𝑛
]

𝑛2 = 𝑜(1)

(B60)

Remark B.3. (Eliminating conditions on higher moments by weight
truncation). Note that Theorem 2.3 is only valid for the BGRG

𝑛
(𝒘) with

weights (𝑤
𝑖
)
𝑖∈[𝑛]

satisfying Condition 1.1a–c, as it requires a finite sec-
ond moment of the degree of a uniformly chosen vertex. However, we
argue that the local convergence statement can easily be extended to
the BGRG

𝑛
(𝒘) not satisfying the latter via a truncation argument. To

do so, we adapt a similar argument from GRG
𝑛
(𝒘) (see the proof of

[44, Theorem 4.23]). Namely, we can truncate the weights of all vertices
by some 𝐾 > 0, that is, introduce BGRG(𝐾)

𝑛
(𝒘) with weights (𝑤

(𝐾)

𝑖
)
𝑖∈[𝑛]

such that

𝑤
(𝐾)

𝑖
= 𝑤

𝑖
∧ 𝐾 (B61)

Note that if (𝑤
𝑖
)
𝑖∈[𝑛]

in BGRG
𝑛
(𝒘) satisfies Condition 1.1a,b, then

(𝑤
(𝐾)

𝑖
)
𝑖∈[𝑛]

in BGRG(𝐾)

𝑛
(𝒘) satisfies Condition 1.1a–c. Hence, the second

moments of 𝐷
(𝑙),(𝐾)

𝑛
and 𝐷

(𝑟),(𝐾)

𝑛
are finite and all results on BCM

𝑛
(𝒅)

can be transferred to BGRG(𝐾)

𝑛
(𝒘) thanks to Theorem 2.3. This means

that (BGRG(𝐾)

𝑛
(𝒘), 𝑉

(𝑙)

𝑛
) converges locally in probability to some limiting

(𝐺, 𝑜). We now show that this implies that also (BGRG
𝑛
(𝒘), 𝑉

(𝑙)

𝑛
) con-

verges locally in probability to (𝐺, 𝑜). By local convergence, for any fixed
rooted graph (𝐻, 𝑜

′
) and 𝑟 ∈ N,

1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

(𝐾)

𝑛
,𝑖)≃(𝐻,𝑜′)}

P
−−→P(𝐵

𝑟
(𝐺, 𝑜) ≃ (𝐻, 𝑜

′
)) (B62)
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We write

1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

𝑛
,𝑖)≃(𝐻,𝑜′)}

=
1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

𝑛
,𝑖)≃(𝐻,𝑜′),𝐵

𝑟
(𝐺

𝑛
,𝑖) contains only 𝑗 such that 𝑤

𝑗
≤𝐾}

+
1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

𝑛
,𝑖)≃(𝐻,𝑜′),𝐵

𝑟
(𝐺

𝑛
,𝑖) contains 𝑗 with 𝑤

𝑗
>𝐾}

(B63)

and note that

lim
𝐾→∞

lim sup
𝑛→∞

E

[

1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

𝑛
,𝑖)≃(𝐻,𝑜′),𝐵

𝑟
(𝐺

𝑛
,𝑖) contains 𝑗 with 𝑤

𝑗
>𝐾}

]

≤ lim
𝐾→∞

lim sup
𝑛→∞

P(𝐵
𝑟
(𝐺

𝑛
, 𝑉

(𝑙)

𝑛
) contains 𝑗 ∶ 𝑤

𝑗
> 𝐾) = 𝑜(1)

(B64)

by Condition 1.1a,b. Thus, for 𝐾 large enough,

1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

𝑛
,𝑖)≃(𝐻,𝑜′)}

d
=

1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

𝑛
,𝑖)≃(𝐻,𝑜′),𝐵

𝑟
(𝐺

𝑛
,𝑖) contains only 𝑗∶𝑤

𝑗
≤𝐾}

+ 𝑜P(1)

=
1
𝑛

∑

𝑖∈[𝑛]

1
{𝐵

𝑟
(𝐺

(𝐾)

𝑛
,𝑖)≃(𝐻,𝑜′)}

+ 𝑜P(1)
P

−−→P(𝐵
𝑟
(𝐺, 𝑜) ≃ (𝐻, 𝑜

′
))

(B65)

Having shown local convergence of BGRG
𝑛
(𝒘) without Condition 1.1c,

we transfer the result on the giant component in a similar manner. Denote
the size of the giant component in BGRG(𝐾)

𝑛
(𝒘) by |𝒞 (𝐾)

max| and the size of
the giant component in BGRG

𝑛
(𝒘) by |𝒞max|. Transferring results from

[13] we obtain, as 𝑛 → ∞,

|𝒞 (𝐾)

max|

𝑛

P
−−→ 𝜉 (B66)

Naturally,
|𝒞max|

𝑛
≥

|𝒞 (𝐾)

max|

𝑛

P
−−→ 𝜉 = P(|𝒞 (𝑜)| = ∞) (B67)

On the other hand, denote 𝑍
≥𝑘

=
1
𝑛

∑
𝑖∈[𝑛]

1
{|𝒞 (𝑖)|≥𝑘} and note that on the

event {𝑍
≥𝑘
≥ 1},

|𝒞max|

𝑛
≤

𝑍
≥𝑘

𝑛

(B68)

By local convergence in probability,

1
𝑛
𝑍
≥𝑘

= E
[

1
{|𝒞 (𝑉

(𝑙)

𝑛
)|≥𝑘}

|𝐺
𝑛

] P
−−→ 𝜉

≥𝑘
= P(|𝒞 (𝑜)| ≥ 𝑘) (B69)

Note that lim
𝑘→∞

𝜉
≥𝑘

= 𝜉. Thus, by (B69), for every 𝜀 > 0,

lim sup
𝑛→∞

P
(
|𝒞max|

𝑛
≥ 𝜉 + 𝜀

)

≤ lim
𝑛→∞

P
( 1
𝑛
𝑍
≥𝑘
≥ 𝜉 + 𝜀

)

≤ lim
𝑘→∞

lim
𝑛→∞

P
( 1
𝑛
𝑍
≥𝑘
≥ 𝜉

≥𝑘
+ 𝜀

)

= 0
(B70)

and the desired statement follows. Hence, the most important results that
we treat in this article, that is, local convergence and the existence of giant
component, are also true for BGRG

𝑛
(𝒘) only satisfying Condition 1.1a,b.

B.4 | Static Local Convergence of BGRG
𝒏
(𝒘) and DRIG

𝒏
(𝒘)

Local convergence of BCM
𝑛
(𝒅): Having verified that BGRG

𝑛
(𝒘) ful-

fils the necessary regularity conditions we can now conveniently transfer
results on the local convergence from [14]. For the comfort of the reader,
we quote the statement of the original result on the local convergence of
BCM

𝑛
(𝒅) ([14, Theorem 2.14]), which states that under Condition 2.1,

as 𝑛 → ∞, (BCM
𝑛
, 𝑉

𝑏

𝑛
) converges locally in probability to (BP

𝛾
, 0). The

limiting object—(BP
𝛾
, 0)—is a mixture of two branching processes with

the root 0. The two processes are needed because of the bipartite struc-
ture of BCM

𝑛
(𝒅)—each of them corresponds to contributions made to

the limit by left- and right-vertices respectively. As the structures of local
limits of BCM

𝑛
(𝒅) and BGRG

𝑛
(𝒘) are very similar, we do not describe

the first one in more detail and direct the reader to Section 2.2 where the
latter is explained.

Local convergence of RIGC: In [14] the local convergence of the result-
ing intersection graph is a consequence of the convergence of the under-
lying bipartite graph. Thus, the same will take place for our model.

Again for the reader’s convenience, we first quote the statement of the
original result from [14] (see [14, Theorem 2.8]: Under Condition 2.1,
as 𝑛 → ∞, (RIGC, 𝑉

𝑙

𝑛
) converges locally in probability to (CP, 𝑜). As we

already mentioned, the convergence of RIGC follows from the conver-
gence of BCM

𝑛
(𝒅). Therefore, the limiting object (CP, 𝑜) is a community

projection of the limiting object (BP
𝑙
, 0) just like RIGC is a community

projection of BCM
𝑛
(𝒅) (see (2.2) in [14]).

Static local limit of BGRG
𝑛
(𝒘) and DRIG

𝑛
(𝒘): We proceed by proving

the local convergence of BGRG
𝑛
(𝒘) and DRIG

𝑛
(𝒘) in Theorem 1.1:

Proof of Theorem 1.1. Thanks to Theorem 2.3 and the fact that under
Condition 1.1 BGRG

𝑛
(𝒘) fulfils Condition 2.1a (see Appendix B.1 and

B.2), we can transfer [14, Theorem 2.8] to BGRG
𝑛
(𝒘), obtaining the

above. The limiting left- and right-degrees 𝐷
(𝑙) and 𝐷

(𝑟) are the ones
derived in Appendix B.1 and B.2.

The result for DRIG
𝑛
(𝒘) is equivalent to [14, Theorem 2.8] and it is a

consequence of the relationship between the resulting DRIG
𝑛
(𝒘) and the

underlying BGRG
𝑛
(𝒘). The convergence of intersection graphs is pre-

served by the community projection that transforms the underlying bipar-
tite structures into them. Hence, naturally, the local limit of DRIG

𝑛
(𝒘) is

a community projection (see (14)) of the local limit of BGRG
𝑛
(𝒘).

B.5 | Static Giant Component

B.5.1 | Giant Component in BGRG
𝒏
(𝒘)

In [13], results on the giant component of BCM
𝑛
(𝒅) are again

shown under Condition 2.1. Hence, assuming Condition 1.1, thanks to
Theorem 2.3 we can transfer them to our situation. We start with the
giant component of the underlying bipartite graph. For the reader’s con-
venience, we state the original result from [13] adapted to the notation we
use in this article. Recall that for the distinction we denote the largest con-
nected component in the underlying bipartite graphs by 𝒞1,𝑏 . Also recall
that 𝜉

𝑙
= 1 − 𝐺

𝐷(𝑙) (𝜂𝑙
) ∈ [0, 1], where 𝜂

𝑙
∈ [0, 1] is the smallest solution of

the fixed point equation

𝜂
𝑙
= 𝐺

�̃�
(𝑟) (𝐺

�̃�
(𝑙) (𝜂

𝑙
)) (B71)

Then, we have the following results on 𝒞1,𝑏 in BCM
𝑛
(𝒅):

Theorem B.7. (The largest component of the BCMn(d) [13, Theorem
2.11]). Consider BCM

𝑛
(𝒅) = BCM

𝑛
(𝒅)(𝒅) under Condition2.1 and further

assume that 𝑉2 + �̄�2 < 2, where 𝑉
𝑘
=

1
𝑛
#{𝑖 ∈ [𝑛] ∶ 𝑑

(𝑙)

𝑖
= 𝑘} and �̄�

𝑘
=

1
𝑀

𝑛

#{𝑎 ∶ |𝑎| = 𝑘}. Under the supercriticality condition E[�̃�
(𝑙)
]E[�̃�

(𝑟)
] > 1,

we have that 𝜉
𝑙
> 0, 𝜂

𝑙
< 1 and 𝜂

𝑟
= 𝐺

�̃�
(𝑙) (𝜂

𝑙
) < 1. Then, as 𝑛 → ∞,

|𝒞1,𝑏 ∩ [𝑛]|

𝑛

P
−−→ 𝜉

𝑙
(B72)

|𝒞1,𝑏 ∩ 𝑉
𝑘
|

𝑛

P
−−→𝑝

𝑘
(1 − 𝜂

𝑘

𝑙
) (B73)

In this case, 𝒞1,𝑏 is unique in the sense that |𝒞2,𝑏|∕(𝑛 + 𝑀
𝑛
)

P
−−→ 0, where

𝒞2,𝑏 is the second largest component. If the supercriticality condition does

not hold, then |𝒞1,𝑏|∕(𝑛 + 𝑀
𝑛
)

P
−−→ 0.

Given this, we obtain Theorem 2.6:

36 of 38 Random Structures & Algorithms, 2025

 10982418, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21264 by C

entrum
 V

oor W
iskunde E

n Info, W
iley O

nline L
ibrary on [14/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Proof of Theorem 2.6. The result is automatically transferred from
Theorem B.7. We are allowed to do that because in Theorem 2.3 we
have linked BCM

𝑛
(𝒅) satisfying Condition 2.1 to BGRG

𝑛
(𝒘) satisfying

Condition 2.1 and we also showed that BGRG
𝑛
(𝒘) satisfies these condi-

tions earlier in this section. Note that the condition 𝑉2 + �̄�2 < 2 made in
[13] is always satisfied in our model (as 𝑉0 > 0) and does not have to be
assumed for Theorem 2.6 to hold.

B.5.2 | Giant Component in DRIG
𝒏
(𝒘)

Once again, we want to transfer results from [13], namely the result on
the giant component in the resulting intersection graph. Again for the
comfort of the reader, we quote the original result with notation adapted
to ours:

Theorem B.8. (Size of the largest component [13, Theorem 2.6]).
Consider RIGC under Condition2.1, and further assume that 𝑉2 + �̄�2 <

2, where 𝑉
𝑘
=

1
𝑛
#{𝑖 ∈ [𝑛] ∶ 𝑑

(𝑙)

𝑖
= 𝑘} and �̄�

𝑘
=

1
𝑀

𝑛

#{𝑎 ∶ |𝑎| = 𝑘}. Then,
there exists 𝜂

𝑙
∈ [0, 1], the smallest solution of the fixed point equation

𝜂
𝑙
= 𝐺

�̃�
(𝑟) (𝐺

�̃�
(𝑙) (𝜂

𝑙
)) (B74)

and 𝜉
𝑙
= 1 − 𝐺

𝐷(𝑙) (𝜂𝑙
) ∈ [0, 1] such that

|𝒞1|

𝑛

P
−−→ 𝜉

𝑙
(B75)

Furthermore, 𝜉
𝑙
> 0 exactly when

E[�̃�
(𝑙)
]E[�̃�

(𝑟)
] > 1 (B76)

In this case, 𝒞1 is unique, in the sense that |𝒞2|∕𝑛
P

−−→ 0, where 𝒞2 is the
second largest component.

Hence, we obtain that our model has a giant component as well when
E[𝑊

2
](𝜇

(2) − 𝜇)∕E[𝑊] > 1, as in Theorem 1.2:

Proof of Theorem 1.2. The convergence in (20) can be transferred from
(B75) because of the graph equivalence from Theorem 2.3 and since
imposing Condition 1.1 on the weights implies that DRIG

𝑛
(𝒘) fulfils

Condition 2.1 (as we have shown in Appendix B.1 and B.2). However,
since, as in the case of RIGC, the giant component in the resulting graph
will exist only if the giant component in the underlying graph exists
this result can be also deduced from Theorem 2.6. Note again that the
condition 𝑉2 + �̄�2 < 2 made in [13] is always satisfied in our model (as
𝑉0 > 0) and does not have to be assumed for Theorem 1.2 to hold. A nice
feature of our model is the fact that we have a more explicit form of the
limiting left- and right-degrees than the authors of [13, 14]. Hence, we
can express the supercriticality condition as in (21): by definition of the
shift random variable �̃�

(𝑟) (see (2.9)),

E[�̃�
(𝑟)

] =

∑

𝑘=1
𝑘P(�̃�

(𝑟)
= 𝑘) =

∑

𝑘=1
𝑘(𝑘 + 1)P(𝐷

(𝑟)
= 𝑘 + 1)

E[𝐷(𝑟)]

=
1
𝜇

∑

𝑘=1
𝑘(𝑘 + 1)𝑝

𝑘+1

=
1
𝜇

∑

𝑙=2
(𝑙 − 1)𝑙𝑝

𝑙
=

𝜇
(2) − 𝜇

𝜇

(B77)

where we have used (B34) and (B36) when substituting explicit expres-
sions for the probability mass function and expected value of the random
variable 𝐷

(𝑟). Similarly,

E[�̃�
(𝑙)
] =

∑

𝑘=1
𝑘(𝑘 + 1)P(𝐷

(𝑙)
= 𝑘 + 1)

E[𝐷(𝑙)]
(B78)

We know by Corollary B.2 that 𝐷(𝑙) is a mixed-Poisson variable with rate
𝑊𝜇. Hence, we need to condition on the weight variable 𝑊 to compute
its expectation:

E[𝐷
(𝑙)
] = E[E(Poi(𝑤𝜇)|𝑊] = E[𝜇𝑊] = 𝜇E[𝑊] (B79)

Plugging it into (B78) yields

E[�̃�
(𝑙)
] =

1
𝜇E[𝑊]

∑

𝑘=1
𝑘(𝑘 + 1)P(𝐷

(𝑙)
= 𝑘 + 1)

=
1

𝜇E[𝑊]

∑

𝑙=2
(𝑙 − 1)𝑙E[E[P(Poi(𝑤𝜇) = 𝑙)|𝑊]]

(B80)

After substituting P(Poi(𝑤𝜇) = 𝑙) =
(𝑤𝜇)

𝑙
𝑒
−𝑤𝜇

𝑙!
we obtain

E[�̃�
(𝑙)
] =

1
𝜇E[𝑊]

∑

𝑙=2
(𝑙 − 1)𝑙E[E[

(𝑤𝜇)
𝑙
𝑒
−𝑤𝜇

𝑙!
|𝑊]]

=
1

𝜇E[𝑊]
E

[

E

[
∑

𝑙=2

(𝑊𝜇)
𝑙

(𝑙 − 2)!
𝑒
−𝑊𝜇|𝑊

]]

=
1

𝜇E[𝑊]
E[E[𝑒

−𝑊𝜇 ⋅ 𝑒𝑊𝜇
(𝑊𝜇)

2|𝑊]]

=
𝜇

2E[𝑊
2
]

𝜇E[𝑊]
=

𝜇E[𝑊
2
]

E[𝑊]

(B81)

Therefore, the condition (21) becomes

E[𝑊
2
](𝜇

(2) − 𝜇)

E[𝑊]
> 1 (B82)

Remark B.4. (Results for BGRG(𝑇)

𝑛
(𝒘)). We claim that BGRG(𝑇)

𝑛
(𝒘)

fulfils the same conditions that guaranteed convergence of the
BGRG

𝑛
(𝒘), that is, uniformity and regularity conditions of the

degree sequences. Indeed, note that by replacing 𝑓(|𝑎|) = |𝑎|!𝑝|𝑎|

by 𝑓(|𝑎|) = (1 + 𝑇)|𝑎|!𝑝|𝑎|, all the proofs from Appendix B follow anal-
ogously. Hence, we do not explicitly repeat them here. However, for
the comfort of the reader we now state the corresponding regularity
conditions as the limiting variables are necessary to understand some of
our statements on the union graph:

1. Denote the degree of a uniformly chosen left-vertex in BGRG(𝑇)

𝑛
(𝒘)

by 𝐷
(𝑙),(𝑇)

𝑛
. Then, as 𝑛 → ∞,

𝐷
(𝑙),(𝑇)

𝑛
→ 𝐷

(𝑙),(𝑇) and E[𝐷
(𝑙),(𝑇)

𝑛
|𝐺

𝑛
]

P
−−→𝜇(1 + 𝑇)E[𝑊] (B83)

where 𝐷
(𝑙),(𝑇) is a Poisson variable with parameter 𝑊𝜇(1 + 𝑇), with

𝜇 =
∑

𝑘
𝑘𝑝

𝑘
.

2. Denote the degree of a uniformly chosen right-vertex in
BGRG(𝑇)

𝑛
(𝒘) by 𝐷

(𝑟),(𝑇)

𝑛
. Then, as 𝑛 → ∞,

P(𝐷
(𝑟),(𝑇)

𝑛
= 𝑘|𝐺

𝑛
)

P
−−→𝑝

𝑘
and E[𝐷

(𝑟),(𝑇)

𝑛
|𝐺

𝑛
]

P
−−→𝜇 (B84)

Naturally, the above automatically transfers to BGRG[0,𝑇]
𝑛

(𝒘), as it is
asymptotically equivalent to BGRG(𝑇)

𝑛
(𝒘).

Appendix C

Convergence of Processes With Discontinuities of the First Kind

To prove the dynamic results for processes of giant membership and size
of the largest group we apply a well-known criterion for convergence
of processes in Skorokhod 𝐽1 topology, that we now quote with a minor
change of replacing [0, 1]—the domain used by [31]—with [0, 𝑡]. Since
the mentioned processes have different codomains ([0, 1] in case of the
giant membership process and R

+
in case of the largest group process)

we refrain from specifying the codomain in what follows, stressing that
the cited results stay the same in both cases.

Theorem C.1. ([31, Theorem 13.1]). For any sequence of probability
measures P

𝑛
in 𝐷[0, 𝑇], it holds that if the finite-dimensional distributions
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of P
𝑛

converge to finite-dimensional distributions of P and P
𝑛

is tight, then
P

𝑛
converges weakly to P as 𝑛 → ∞.

Naturally, the convergence of probability measures in 𝐷[0, 𝑇] will imply
the convergence of random elements with sample paths in 𝐷[0, 𝑇]. Since
tightness might sometimes be difficult to verify, we make use of the fol-
lowing well-known result that allows us to check relative compactness in
distribution instead:

Theorem C.2. ([51, Theorem 16.3]). For any sequence of random ele-
ments 𝜉1, 𝜉2, . . . in a metric space 𝑆, tightness implies relative compactness
in distribution, and the two conditions are equivalent when 𝑆 is separable
and complete.

An extension of the Arzellà-Ascoli result to 𝐷[0, 𝑇] provides a convenient
criterion for relative compactness in distribution. From there, it is possi-
ble to derive a couple of alternative criteria. We refrain from providing all
of them and state the following result on weak convergence of processes
with discontinuities with the criterion that was the most suitable for us.
For a more detailed overview of other possibilities, we refer the reader to
[31, 51].

Theorem C.3. ([31, Theorem 13.3]). Assume a sequence of processes
(𝑋

𝑛
(𝑠))

𝑠∈[0,𝑇] and a process ((𝑠))
𝑠∈[0,𝑇] in 𝐷[0, 𝑇], satisfy the following con-

ditions:

i. For all {𝑠1, . . . , 𝑠𝑘} ∈ [0, 𝑇] ∶ (𝑋
𝑛
(𝑠1), . . . , 𝑋𝑛

(𝑠
𝑘
))

𝑑

−−→
((𝑠1), . . . ,(𝑠

𝑘
)) as 𝑛 → ∞.

ii. (𝑇) − (𝑇 − 𝛿)
P

−−→ 0 as 𝛿 → 0.

iii. For every 𝜀, 𝜂 > 0 there exists 𝑛0 ≥ 1 and 𝛿 > 0 such that for all 𝑛 ≥
𝑛0

P

(

sup
𝑠,𝑠1 ,𝑠2∶𝑠∈[𝑠1 ,𝑠2],𝑠2−𝑠1<𝛿

min
(
|
|
|
𝑋

𝑛
(𝑠) − 𝑋

𝑛
(𝑠1)

|
|
|
,

|
|
|
𝑋

𝑛
(𝑠2) − 𝑋

𝑛
(𝑠)

|
|
|

)

> 𝜀

)

≤ 𝜂

(C1)

Then, as 𝑛 → ∞, (𝑋
𝑛
(𝑠))

𝑠∈[0,𝑇] converges weakly to ((𝑠))
𝑠∈[0,𝑇] in Sko-

rokhod 𝐽1 topology on 𝐷[0, 𝑇].

Thanks to the fact that the space of rooted graphs equipped with the local
topology is Polish, we can use the same criteria to extend the notion of
local convergence to the dynamic setting [31, Chapter 12]. mentions that
all the results relevant for processes in 𝐷([0, 1], [0, 1]) easily extend to
more general processes with sample paths in 𝐷([0, 𝑇], 𝑆)—the space of
càdlàg functions 𝑓 ∶ [0, 𝑇] → 𝑆, where 𝑆 is separable and complete. Nat-
urally, in this case the Euclidian distances in Theorem C.3 need to be
replaced with the local metric. Alternatively, the required results can be
found in [51, Chapter 16].
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