2023-08-10
Optimizing sparse fermionic Hamiltonians
Publication
Publication
Quantum , Volume 7 p. 1081:1- 1081:34
We consider the problem of approximating the ground state energy of a fermionic Hamiltonian using a Gaussian state. In sharp contrast to the dense case [1, 2], we prove that strictly q-local sparse fermionic Hamiltonians have a constant Gaussian approximation ratio; the result holds for any connectivity and interaction strengths. Sparsity means that each fermion participates in a bounded number of interactions, and strictly q-local means that each term involves exactly q fermionic (Majorana) operators. We extend our proof to give a constant Gaussian approximation ratio for sparse fermionic Hamiltonians with both quartic and quadratic terms. With additional work, we also prove a constant Gaussian approximation ratio for the so-called sparse SYK model with strictly 4-local interactions (sparse SYK-4 model). In each setting we show that the Gaussian state can be efficiently determined. Finally, we prove that the O(n−1/2) Gaussian approximation ratio for the normal (dense) SYK-4 model extends to SYK-q for even q > 4, with an approximation ratio of O(n1/2−q/4). Our results identify non-sparseness as the prime reason that the SYK-4 model can fail to have a constant approximation ratio [1, 2].
Additional Metadata | |
---|---|
doi.org/10.22331/q-2023-08-10-1081 | |
Quantum | |
Organisation | Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands |
Herasymenko, Y., Stroeks, M., Helsen, J., & Terhal, B. (2023). Optimizing sparse fermionic Hamiltonians. Quantum, 7, 1081:1–1081:34. doi:10.22331/q-2023-08-10-1081 |