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We consider the problem of approximating the
ground state energy of a fermionic Hamilto-
nian using a Gaussian state. In sharp con-
trast to the dense case [1, 2], we prove that
strictly q-local sparse fermionic Hamiltonians
have a constant Gaussian approximation ratio;
the result holds for any connectivity and in-
teraction strengths. Sparsity means that each
fermion participates in a bounded number of
interactions, and strictly q-local means that
each term involves exactly q fermionic (Ma-
jorana) operators. We extend our proof to
give a constant Gaussian approximation ratio
for sparse fermionic Hamiltonians with both
quartic and quadratic terms. With additional
work, we also prove a constant Gaussian ap-
proximation ratio for the so-called sparse SYK
model with strictly 4-local interactions (sparse
SYK-4 model). In each setting we show that
the Gaussian state can be efficiently deter-
mined. Finally, we prove that the O(n−1/2)
Gaussian approximation ratio for the nor-
mal (dense) SYK-4 model extends to SYK-
q for even q > 4, with an approximation ra-
tio of O(n1/2−q/4). Our results identify non-
sparseness as the prime reason that the SYK-4
model can fail to have a constant approxima-
tion ratio [1, 2].
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1 Introduction
Approximating the ground state energy of a local
Hamiltonian is a central problem in both physics and
computer science. In computer science it plays a key
role in complexity theory [3], while in physics ground
states capture the behaviour of systems at low energy.
Two common families of Hamiltonians of interest are
those defined on collections of qubits and those acting
on fermionic degrees of freedom. Fermionic Hamilto-
nians model various physical systems, such as elec-
trons in condensed matter and quantum chemistry —
prime targets for quantum simulation. Fermions also
define a model of quantum computation, equivalent to
the one based on qubits [4]. Despite its practical and
conceptual relevance, the general problem of approx-
imating fermionic ground state energies is currently
less well understood than its qubit counterpart.
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Some rigorous progress in studying this problem –
both for qubits and for fermions – was made from
the perspective of optimization. In this subfield of
computer science, one of the central tasks is efficiently
finding problem solutions that are provably close to
optimal [5]. The closeness is usually quantified by an
approximation ratio, i.e. the ratio between the value
attained by an algorithm and the optimal value for
a given problem. For the classical equivalent of the
ground state energy finding – Constraint Satisfaction
Problems (CSPs) – such approximation ratios have
been extensively studied [6].

For quantum Hamiltonians, an interesting ques-
tion is how well the ground state energy can be ap-
proximated using “classical” or “mean-field” states.
For qubit Hamiltonians the natural choice of classical
states are product states, while for fermionic Hamilto-
nians they are Gaussian states. Gaussian states play
a prominent role in fermionic optimization problems
using the mean-field Hartree-Fock method, see e.g.
[7], or dynamical mean-field theory via solving impu-
rity problems [8], or the simulation of free fermionic
computation [9, 10].

Formal guarantees on approximation ratios char-
acterize numerical simulation methods using classical
states and outline their limitations compared to quan-
tum computing. For qubit Hamiltonians, it was first
proved by Lieb [11] (see [12] for a simplified proof)
that there always exists a product state which ap-
proximates the ground state energy of a traceless 2-
local qubit Hamiltonian by a factor of 1/9. Many
more results on approximating ground state energies
of many-body systems by product states can be found
in [13, 14, 15, 16, 17, 18]. In [12] it was shown,
through the Goemans-Williamson method, that for
a 2-local traceless qubit Hamiltonian a product state
can always be efficiently found with approximation
ratio O(1/ log(n)) where n is the number of qubits.
Ref. [12] also considered fermionic Hamiltonians with
quadratic (q = 2) and quartic (q = 4) fermionic
terms. They left as an open question whether all
4-local fermionic Hamiltonians have a constant ap-
proximation ratio with respect to Gaussian states (a
Gaussian approximation ratio).

A surprising counterexample to this conjecture was
recently presented in Refs. [1, 2] — the family of SYK-
4 models (Sachdev-Ye-Kitaev models with quartic
fermionic interactions, see Definition 2). It was shown
that with high probability, SYK-4 Hamiltonians ad-
mits a Gaussian approximation ratio no better than
O(1/

√
n) where n is the number of fermionic modes.

Contrasting this result to Refs. [11, 14], it means that
qubit and fermionic ground states strongly differ in
their approximability by classical states. Moreover,
this opens up the question of which fermionic Hamil-
tonians do allow finite Gaussian approximation ratios.

This is the question that we aim to answer here.
We do this by considering sparse Hamiltonians, i.e.

Hamiltonians where each fermionic mode participates
in a bounded number of interactions. Sparsity holds
for many physically relevant Hamiltonians, such as
the Fermi-Hubbard model. It also holds for exotic
Hamiltonians, such as those determined by constant-
degree expander hypergraphs; notably, it does not
hold for the SYK model. Sparsity of interactions has
been considered in the classical CSP literature. It was
shown in [19] that the MaxQP problem has an efficient
constant approximation ratio algorithm on graphs of
bounded chromatic number, in particular graphs with
bounded degree. We show that a similar assumption
of sparsity is enough to guarantee constant Gaussian
approximation ratios for 4-local and strictly q-local
Hamiltonians. Moreover, we show that a constant
Gaussian approximation ratio can be achieved for the
sparse SYK-4 model [20] (which has a logarithmi-
cally growing interaction participation and is thus not
sparse by our definition). Finally, we consider in more
detail the optimal approximation ratio for the dense
SYK-q model for q > 4 (thus extending the work of
[2]). We show that the shortfall of Gaussian states is
even more pronounced in this setting.

To avoid confusion, we note that instead of the
ground state energy, existing works often consider ap-
proximating the maximal eigenvalue of the Hamilto-
nian λmax(H). These two optimization problems are
equivalent if the family of Hamiltonians considered
is invariant under a change of sign (e.g. traceless q-
local Hamiltonians). For mathematical convenience
and consistency with the literature, in the rest of the
text, we will also be formulating our results in terms
of approximating λmax(H).

2 Statement of results
2.1 Preliminaries
Before surveying our results, we introduce the basic
setup of fermionic Hamiltonians and q-locality. This
subsection also defines the SYK-q model and spells
out the previous result of a vanishing Gaussian ap-
proximation ratio for SYK-4.

We consider a system of 2n traceless Majorana
fermion operators ci, i = 1, . . . , 2n with c2

i = I, c†
i =

ci, forming a Clifford algebra, i.e., {cj , ck} = 2δj,kI
and representing n fermionic modes. We denote
as I an ordered subset I = {i1, i2, ..iq} ⊆ [2n] ≡
{1, . . . , 2n} where i1 < i2 < . . . iq with q even. We
denote CI as the Hermitian Majorana monomial

CI ≡ iq/2ci1 ..ciq
, (1)

and one can verify that

C2
I = I.

We can think about a subset I as corresponding to
a term or interaction in a Hamiltonian. Indeed, it is
natural to impose some form of locality:
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Figure 1: Illustrating the key idea of the proof of Theorem 5. An example of a strictly 4-local Hamiltonian is
given in (a), vertices and faces representing Majorana operators and their interactions. The Hamiltonian is split
into sets of terms – different colors in (b) – well separated from each other inside each set (so-called diffuse sets,
see Definition 15). The next step is to match all Majorana operators, i.e., split the vertices into disjoint pairs,
each connected by an edge (see panel (c)). We separately match the support of each term in one targeted set
of terms (the color highlighted in (b) and (c)). The remaining vertices are matched in such a way that no two
vertices connected by an edge belong to the same term. The Gaussian state is then created from the resulting
matching, with only terms from the targeted set contributing to the energy. By optimizing the choice of the
targeted set, a finite approximation ratio can be guaranteed.

Definition 1 (q-local fermionic Hamiltonian). Let H
be a fermionic Hamiltonian on 2n Majorana opera-
tors. We say that H is q-local if H is a sum of Her-
mitian traceless terms CI of weight at most q, i.e.
each term is proportional to a product of at most q
operators ci. H is said to be strictly q-local when all
terms have exactly weight q.

A local traceless fermionic Hamiltonian H =∑
I∈I JICI is thus characterized by an interaction set

I and the coefficients JI ∈ R. The maximum eigen-
value of H is denoted by λmax(H) := maxρ Tr(Hρ).
Sometimes we will refer to a collection of sets I de-
noted as I = {I1, I2, . . .}. The support of I is defined
as Sup(I) = ∪iIi and I ′ ⊆ I implies that the sets in
I ′ are also sets in I.

Definition 2 (SYK-q Model). A q-local (with q even)
SYK model on 2n Majoranas is defined as a family of
Hamiltonians

H =
(

2n

q

)−1/2 ∑
I⊆[2n],|I|=q

JI CI , (2)

where each JI is a Gaussian random variable (i.e.,
with zero mean and unit variance) and each CI is
the product of the q distinct Majorana operators as in
Eq. (1). We normalize the model in expectation, i.e.,
E
(
Tr(H2)

)
=
(2n

q

)−1∑
I⊆[2n],|I|=q E(J2

I ) Tr(I) = 2n.

In [1] it was shown that with high probability (over
the draw of JIs) for the SYK-4 model, one has

max
ρ Gaussian

Tr(Hρ) = O(1).

In order to thus provide a counterexample to a con-
stant Gaussian approximation ratio, one needs to

prove a lower bound on λmax(H) for the SYK-4 model,
which holds with high probability, which was done in
[2]:

Theorem 3. [2] There is a poly(n)-time quantum
algorithm that, given any SYK-4 Hamiltonian H, re-
turns a quantum state ρ. With probability 1 − exp

(
−

Ω(n)
)

(over the draw of the JIs), this state ρ has
Tr(Hρ) = Ω(

√
n).

2.2 Sparse fermionic Hamiltonians
Key to our work is the notion of a sparse Hamiltonian.

Definition 4. Let H be a local traceless fermionic
Hamiltonian of 2n Majorana operators. We say that
H is k-sparse, for an integer k, if no Majorana opera-
tor ci occurs in more than k terms of the Hamiltonian.

Using graph theoretic terminology, one may say
that interactions in a k-sparse Hamiltonian form a hy-
pergraph of bounded degree k. This condition allows
us to efficiently find Gaussian states with constant
approximation ratio. We have the following theorem,
which is the main result of our work:

Theorem 5. Let H be a traceless fermionic Hamilto-
nian on 2n Majorana operators with maximal eigen-
value λmax(H). If H is k-sparse and strictly q-local
and n > (q2−1)k, a Gaussian state ρ can be efficiently
constructed such that

Tr(Hρ)
λmax(H) ≥ 1

Q
, (3)

for Q = q(q − 1)(k − 1)2 + q(k − 1) + 2.

The proof of this theorem is given in Section 5; its
basic idea is explained in Figure 1.
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We note that this proof only holds for Hamiltoni-
ans with terms of exactly weight q. Typical phys-
ical Hamiltonians, however, have quadratic (kinetic
energy of the electrons) and quartic terms (potential
energy due to Coulomb interaction). Fortunately, we
can also show that in the q = 4 case we can include
q = 2 terms. For this we use a trick from [12] to
lift such a 4-local Hamiltonian to a strictly 4-local
Hamiltonian. This trick makes the Hamiltonian non-
sparse. However, we show in Section 6 that, in this
special case, we can circumvent the non-sparseness of
the Hamiltonian and achieve a constant Gaussian ap-
proximation ratio.

Theorem 6. Let H be a traceless fermionic Hamilto-
nian on 2n Majorana operators with maximal eigen-
value λmax(H). If H is k-sparse with terms of weight
2 and 4 and 2n > 15k, a Gaussian state ρ can be
efficiently constructed, such that

Tr(Hρ)
λmax(H) ≥ 1

2Q
(4)

for Q = 12(k − 1)2 + 4(k − 1) + 2.

2.3 The sparse q = 4 SYK model
In view of Theorem 5 it is worth revisiting the lack of a
constant Gaussian approximation for the SYK model.
The SYK-q model in Definition 2 is extremely non-
sparse, in the sense that every Majorana operator oc-
curs together with all other Majorana operators. This
makes the SYK model somewhat unphysical, and sev-
eral sparse versions of the model have been considered
[20, 21]. Such sparse models intend to produce the
same (low energy) physics, while being easier to sim-
ulate on both quantum and classical computers (see
sections III and V in [20]). The sparse SYK model is
generated by including terms by a Bernoulli trial with
a certain probability p tuned such that the expected
sparsity is bounded:

Definition 7. The sparse SYK- 4 or SSYK-4 model
on 2n Majorana operators with expected sparsity k =
O(1) is given as

H = 1√
2kn

∑
I⊂[2n],|I|=4

XIJICI (5)

where the XI are i.i.d. Bernoulli random variables
with p = Pr(XI = 1) = k

(2n−1
3 ) and the JI are i.i.d.

Gaussian random variables with mean 0 and variance
1.

Unlike the full SYK model with
(2n

4
)

terms in H,
the sparse SYK model has a number of terms ∼ n in
expectation. Note that the SSYK- 4 model is only k-
sparse in expectation, and with high probability there
is a Majorana operator with degree Ω

( log(n)
log log(n)

)
(the

degree distribution follows that of an Erdős-Renyi hy-
pergraph. See Theorem 3.4 in [22] for a proof of the

statement for Erdős-Renyi graphs. The hypergraph
version follows by the same logic). This means that
Theorem 5 does not directly apply. However, one can
show, through a truncation argument, that almost all
instantiations of SSYK- 4 can be sparsified, giving rise
to a constant approximation ratio result that holds
with high probability.

Theorem 8. Let H be a SSYK- 4 Hamiltonian in
Eq. (5) with expected degree k = O(1), such that
n > 120(k + 1). With probability at least 1 −
4 exp

[
− e−16(k+1)k3

64(8k+7) n
]
, a Gaussian state ρ can be ef-

ficiently constructed such that

Tr(Hρ)
λmax(H) ≥ 1

Q
, (6)

where Q = 1236 + 2752k + 1536k2.

Thus we arrive at the surprising conclusion that the
SSYK- 4 model has a constant Gaussian approxima-
tion ratio, while the dense SYK- 4 model does not —
even though SSYK- 4 has similar physical properties
as SYK-4.

2.4 Higher-q SYK models
We investigate what Gaussian approximation ratios
can be achieved for the dense SYK model of even
weight q > 4, as this was left as an open question
in [2]. We establish an upper bound on the largest
Gaussian expectation value of SYK-q, which behaves
rather dramatically for q > 4. We prove the following
Lemma employing a method similar to the one used
in [1].

Lemma 9. Let H be the dense SYK-q Hamiltonian
(with even q ≥ 4 and q = O(1)). With probability
at least 1 − exp

(
− Ω(n)

)
over the draw of SYK-q

Hamiltonians, the expectation value of every Gaussian
state ρ is bounded, more precisely:

max
ρ Gaussian

Tr(Hρ) = O
(
n1−q/4). (7)

This Lemma is proved in Section 8. Our second
result establishes a lower bound on the largest eigen-
value for SYK-q, essentially generalizing what was es-
tablished in [2] for q = 4. We prove the following
Lemma (its proof can be found in Section 8):

Lemma 10. Let H be the dense SYK-q Hamiltonian
with even q ≥ 4 (and q = O(1)). With probability
at least 1 − exp

(
− Ω(n)

)
over the draw of SYK-q

Hamiltonians, λmax(H) = Ω(
√

n).

As an immediate consequence of the previous re-
sults, we see that the Gaussian approximation ra-
tio of the dense SYK-q model can be no better than
O
(
n1/2−q/4):
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Theorem 11. Let H be the dense SYK-q Hamilto-
nian (with even q ≥ 4 and q = O(1)). With probabil-
ity at least 1 − exp

(
− Ω(n)

)
over the draw of SYK-q

Hamiltonians, we have

max
ρ Gaussian

Tr(Hρ)
λmax(H) = O

(
n1/2−q/4). (8)

Proof. Theorem 11 follows from combining Lemma 9
and Lemma 10 and applying the union bound.

3 Discussion
The goal of this section is to place our results in a
broader context and mention a few open questions.

First, let us discuss the relation between this work
and the fermion-to-qubit mapping methods. As
was shown in [4], one can map a sparse O(1)-local
fermionic Hamiltonian onto a sparse O(1)-local qubit
Hamiltonian (BK-superfast encoding). However, for
this mapping one needs to enforce parity checks which
are in general nonlocal; therefore, we cannot obtain
our Theorem 5 in this way. There is also an addi-
tional obstacle: using the BK-superfast encoding, an
approximating product state for the qubit Hamilto-
nian does not necessarily map back to a Gaussian
fermionic state.

Ref. [4] also showed that one can map a general lo-
cal fermionic Hamiltonian (like a SYK model) onto
a qubit Hamiltonian with terms which are O(log n)-
local. Such qubit Hamiltonian is generally not ex-
pected to have a constant approximation ratio by a
product state due to its n-dependent locality. In fact,
one can easily prove that a dense model like the SYK
model can only be mapped onto a qubit Hamiltonian
which is Ω(log n)-local. We give the argument in Ap-
pendix A.

These observations suggest that approximation ra-
tios by classical states such as Gaussian states or prod-
uct states are likely to be affected by sparsity in the
case of fermions, which is consistent with our new re-
sults.

Another question which is raised by our work and
that of [2] and [15], is whether studying fermionic
Hamiltonians can lead to new insights into the possi-
bility of a quantum PCP theorem [23]. In this con-
text it is important to mention that, besides the lower
bound in Theorem 3, Ref. [2] also determined an up-
per bound on λmax of the SYK-4 model showing that
with high probability λmax = Θ(

√
n). This shows

that the SYK-4 model is extremely frustrated: the
maximal average expected energy per term, the en-
ergy density, is only Θ(n−3/2). In contrast, our re-
sults for the sparse SYK model (see Lemma 23) show
that the maximal average expected energy per term is
Ω(1), which is the more ‘natural’ physical scaling. A
simple fermionic toy model in which the maximal av-
erage energy per term decreases is a model in which

an extensive set of Majorana operators is mutually
anti-commuting, see Lemma 29 in Appendix A. The
presence of many such fully-anticommuting sets in the
SYK model can be seen as one of the intuitive reasons
why the maximal energy density achieved is so low.

For k-local qubit Hamiltonians researchers have
looked at the hardness of approximating the maxi-
mal energy density with constant error ϵ: showing
that this problem is QMA-complete would prove the
quantum PCP theorem. For dense (non-sparse) k-
local qubit Hamiltonians, it was proved in [15] (The-
orem 13) that there is a polynomial-time classical al-
gorithm to approximate the maximal energy density,
using product state approximations. Ref. [24] gener-
alized this result and formulated an efficient classical
algorithm which approximately estimates the free en-
ergy of a 2-local dense qubit Hamiltonian.

One can similarly ask the question of approxi-
mating the maximal energy density for dense q-local
fermionic Hamiltonians. Observe that the question
is moot if the maximal energy density decreases as a
function of n (as in the SYK model), since for large
enough n (depending on ϵ) the classical algorithm
could always output 0 and make an error less than ϵ.
However, other dense O(1)-local fermionic Hamilto-
nians could exist for which this question is nontrivial
and not already covered by the dense qubit case.

There are further open directions that are more
practically-oriented. One of these is achieving finite
approximation ratios for at least some classes of non-
sparse fermionic Hamiltonians (e.g., quantum chem-
istry or lattice systems with long-range Coulomb in-
teractions). Furthermore, in most applications, one is
interested in obtaining approximation ratios as close
to 1 as possible. Although for most systems of interest
one cannot expect ratios that are ϵ-close to 1, our the-
oretical lower bounds could still be vastly improved.
For instance, for sparse SYK with k = 10, the guar-
anteed ratio is only ≃ 5 × 10−6 (cf. Theorem 8). This
can be contrasted to the Hartree-Fock applications
to quantum chemistry systems, which usually achieve
approximation ratios of > 0.9. Improving our results
to derive more realistic lower bounds could be of great
value; some possible approaches are as follows.

One option is to extend the interaction subsets tar-
geted by the constructed Gaussian state beyond the
diffuse subsets considered here. If the overlapping in-
teractions in the problem Hamiltonian are not prone
to frustration, including them in the targeted set may
dramatically increase the approximation ratio. The
proof of Theorem 6 (Section 6) is a special case of this
approach, with the constructed Gaussian state target-
ing multiple overlapping terms at the same time.

Another option for improvement is to minimize the
contribution from frustration terms instead of avoid-
ing frustration altogether. This could both improve
the eventual approximation ratio by targeting a larger
pool of interactions, as well as allowing to mitigate the
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issue of non-sparsity. An example of this approach is
the proof of Theorem 8 (Section 7), where the con-
tributions from the non-sparse part of the Hamilto-
nian are shown to be small compared to the energy
achieved by the Gaussian state.

As a third option, one can modify the basis of
fermionic modes so that non-sparsity and frustration
in the Hamiltonian are minimized. In the simplest
case of q = 2, such a basis rotation can always turn
all interactions into a diffuse set (simply by diagonal-
izing the Hamiltonian). A similar improvement may
be possible for some classes of q-local Hamiltonians
with q ≥ 4.

Developing these and other directions for efficient
Gaussian ground state approximation are interesting
possibilities for future research.

Finally, it would be interesting to provide a non-
random family of fermionic Hamiltonians without a
constant approximation ratio with respect to Gaus-
sian states.

4 Background on Gaussian states
In this section, we first provide some background and
definitions that will be used throughout the remainder
of this text.

4.1 Gaussian states
We define the class of fermionic Gaussian states,
which are ground states and thermal states of non-
interacting, quadratic (q = 2), fermionic Hamiltoni-
ans, and give some of their useful properties.

We first note that any transformation by a real or-
thogonal matrix R ∈ SO(2n), i.e.,

c̃i =
∑

j

Rijcj , (9)

preserves the properties of Majorana operators and
hence gives rise to a new set of 2n Majorana operators
{c̃j}2n

j=1.

Definition 12. Fermionic Gaussian state.
Given 2n Majorana operators denoted by c1, . . . , c2n.
A fermionic Gaussian state is a – generally mixed –
state of the form

ρ = 1
2n

exp
(

− i
∑
i ̸=j

βijcicj

)
, (10)

where (βij)2n
i,j=1 is a real anti-symmetric matrix and

the normalization is such that Tr ρ = 1.
Fermionic Gaussian states have a number of useful
properties, which we list here for future use.

1. The matrix β can be block-diagonalized by a real
orthogonal matrix R ∈ SO(2n) such that

β = R

n⊕
j=1

(
0 bj

−bj 0

)
RT , (11)

with bj ≥ 0. Therefore, ρ can be brought to the
following standard form

ρ = 1
2n

n∏
j=1

(
I + iλj c̃2j−1c̃2j

)
, (12)

where c̃i =
∑

j Rijcj and λj = tanh(2bj) ∈
[−1, +1].

2. Each fermionic Gaussian state can be associated
with a 2n × 2n correlation matrix Γ, with

Γij = i

2Tr
(
ρ[ci, cj ]

)
. (13)

Γ is a real anti-symmetric matrix and hence there
is a real orthogonal matrix R ∈ SO(2n) such that

Γ = R

n⊕
j=1

(
0 λj

−λj 0

)
RT , (14)

where the λj are in Eq. (12).

3. For pure fermionic Gaussian states, λj ∈
{−1, +1} and hence for pure Gaussian states
ΓT Γ = I. For mixed fermionic Gaussian states,
ΓT Γ ≤ I.

4. The Pfaffian of a 2k × 2k anti-symmetric matrix
A is defined as

Pf(A) = 1
2kk!

∑
π∈S2k

sign(π)Πk
i=1Aπ(2i−1),π(2i).

Alternatively, we can see the Pfaffian as a sum
over perfect matchings in a graph of 2k ver-
tices where an edge (i < j) has weight Aij and
each matching contributes the products of these
weights to the sum. For a Gaussian state with
correlation matrix Γ, one has for even |I|:

Tr(CIρ) = Pf(ΓI), (15)

where ΓI is the |I|× |I| submatrix of Γ restricted
to rows and columns in the ordered set I.

A special class of a pure Gaussian states is given by
a perfect matching M of Majorana operators. Such
matching M is specified by n disjoint pairs (m1, m2)
with m1 < m2. For each pair we have a coefficient
λ(m1,m2) = ±1, together forming the n-dimensional

vector λ⃗. The class of states are of the form

ρ(M, λ⃗) = 1
2n

Π(m1,m2)∈M (I + iλ(m1,m2)cm1cm2).
(16)

It is useful to introduce a notion of consistency
between this class of Gaussian states specified by a
matching M and an interaction subset I.

Definition 13. An (even) interaction subset I ⊆ [2n]
and a perfect matching M on [2n] are called consis-
tent if M contains a perfect matching of the elements
of I. Given a set of interactions I, we say that M
is consistent (resp. inconsistent) with I if M is con-
sistent (resp. inconsistent) with each interaction in
I.
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The following Lemma is straightforward

Lemma 14. Consider a matching M and an in-
teraction I = {i1, i2, ..iq}.

1. If M is consistent with interaction I, let the per-
fect matching on the subset I be given by pairs
(iπ(2l−1), iπ(2l)) for l = 1, . . . , q/2 and a permu-
tation π ∈ Sq where iπ(2l−1) < iπ(2l). Then, the
following holds:

Tr(CIρ(M, λ⃗)) = sign(π)
∏

l∈{1,...,q/2}

λ(iπ(2l−1),iπ(2l)).

where sign(π) = ±1.

2. If M is inconsistent with I, then

Tr(CIρ(M, λ⃗)) = 0. (17)

Proof. In order for the trace to be nonzero, one needs
to exactly match the Majorana operators in CI with
some in the expansion of ρ(M, λ⃗) since Tr(CI′) = 0 for
any non-empty subset I ′. If M is inconsistent, there is
no term in the expansion of ρ which precisely matches
CI , so the expectation vanishes. If M is consistent,
we have

Tr(CIρ(M, λ⃗))

= 1
2n

Tr
(
CIΠ(m1,m2)∈M(I + iλ(m1,m2)cm1cm2)

)
= 1

2n
Tr
(
CIΠ(m1,m2)∈M,(m1,m2)∩I ̸=∅)

× (iλ(m1,m2)cm1cm2)
)

= sign(π)
∏

l∈[1,..,q/2]

λ(iπ(2l−1),iπ(2l)). (18)

Here we have used that one can first reorder CI such
that the pairs in the perfect matching are adjacent,
i.e. CI = sign(π)iq/2ciπ(1)ciπ(2) . . . ciπ(q) , then one can
commute through each pair to its matching pair in ρ
and use (cicj)2 = −I, iq = (−1)q/2 and tr(I) = 2n.

5 Approximation ratios for sparse
fermionic Hamiltonians
In this section we prove Theorem 5. We begin by set-
ting up needed definitions and stating several techni-
cal Lemmas (which are proved in the Appendices).

The key auxiliary notion in the proof of Theorem 5
is that of a diffuse subset of Hamiltonian terms. Intu-
itively, the terms in a diffuse subset are well separated
from each other while covering only a limited part of
the system. This idea is formalized as follows:

Definition 15. Consider a set of q-local interactions
I on 2n Majorana operators. A subset of these in-
teractions I ′ ⊂ I is diffuse with respect to I, if the
following three conditions apply:

1. ∀I1, I2 ∈ I ′, I1 and I2 don’t share any Majorana
operators, i.e. I1 ∩ I2 = ∅.

2. ∀I1, I2 ∈ I ′, there exists no I3 ∈ I which shares
Majorana operators with both I1 and I2 (if I3 ∩
I1 ̸= ∅ then I3 ∩ I2 = ∅ and vice versa).

3. The size of support of I ′, i.e. |Sup(I ′)|, is
smaller than 2qn

q+1 .

In the setting of Theorem 5, diffuse sets of terms
appear naturally due to the following Lemma.

Lemma 16. Consider a k-sparse strictly q-local
fermionic Hamiltonian H on 2n Majoranas. The in-
teraction set I of H can be split into Q disjoint subsets
Iα (α ∈ [Q]) all of which are diffuse with respect to I
such that

I =
Q⋃

α=1
Iα. (19)

The parameter Q is given as Q = q(q − 1)(k − 1)2 +
q(k − 1) + 2 and does not depend on n. The construc-
tion of this splitting can be done efficiently, in time
poly(n).

Lemma 16 is a special case of Lemma 19, which is
proven in Appendix B. The proof relies on a combi-
natorial argument on a graph that takes Hamiltonian
terms as vertices and connects them with an edge if
the pair violates conditions 1 or 2 of Definition 15.
By the sparsity assumption, this graph has an effi-
ciently constructable coloring with a bounded number
of colors, from which the split I =

⋃Q
α=1 Iα can be

constructed.
The usefulness of diffuse sets comes from Lemma

20, see its proof in Appendix C. Here we state its
corollary, relevant to proving Theorem 5:

Lemma 17. Let the interaction set I ′ be diffuse w.r.t.
I ⊃ I ′ (I ′ and I are strictly q-local and k-sparse). If
n > (q2−1)k, one can efficiently construct a matching
M of the set [2n] that is consistent with each inter-
action in I ′ and inconsistent with each interaction in
I\I ′.

With matchings introduced above, one can con-
struct useful Gaussian states. The tool to do so is
given by the following statement:

Lemma 18. Let H =
∑

I∈I JICI be strictly q-local
and I ′ be a diffuse subset of I. Let M be a matching of
[2n] as guaranteed by Lemma 17. One can efficiently
construct a Gaussian state ρI′ with the property:

Tr(HρI′) =
∑
I∈I′

|JI |. (20)

Lemma 18 is a specific case of a slightly more gen-
eral Lemma 21, which is stated and proven in Ap-
pendix D. We denote

J (I ′) ≡
∑
I∈I′

|JI |. (21)
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As shown below, Theorem 5 can be proven by con-
structing a diffuse I ′ ⊂ I and a corresponding Gaus-
sian state ρI′ with large enough Tr(HρI′) = J (I ′).
Theorem (Repetition of Theorem 5). Let H be
a traceless fermionic Hamiltonian on 2n Majoranas
with maximal eigenvalue λmax(H). If H is k-sparse
and strictly q-local and n > (q2 − 1)k, a Gaussian
state ρ can be efficiently constructed, such that

Tr(Hρ)
λmax(H) ≥ 1

Q
, (22)

for Q = q(q − 1)(k − 1)2 + q(k − 1) + 2.
Proof. For a Hamiltonian H =

∑
I∈I JICI , we con-

struct the splitting of I into diffuse subsets I =
∪αIα as guaranteed by Lemma 16. Next, find α =
argmaxα′J(Iα′); since Q in Lemma 16 is constant, α
can be found efficiently. Next, use Lemma 17 to con-
struct a matching M(Iα) (the condition n > (q2 −1)k
is satisfied by assumptions of Theorem 5). Since Iα is
diffuse with respect to I, the Gaussian state ρIα can
be efficiently constructed from M(Iα) via Lemma 18.
Using Tr(HρIα

) = J(Iα), the following inequality can
be obtained for the resulting approximation ratio:

Tr(HρIα
)

λmax(H) ≥ J(Iα)∑
α′ J(Iα′) ≥ 1

Q
. (23)

For the first inequality, note that λmax(H) ≤∑
I∈I |JI | =

∑
α J(Iα). The second inequal-

ity comes from a pigeonhole-type argument: if
J(Iα) = maxα′ J(Iα′), it directly follows that J(Iα) ≥
1
Q

∑
α′ J(Iα′). Inequality (23) concludes the proof, as

it asserts the approximation ratio bound claimed in
the Theorem.

6 Sparse Hamiltonians with terms of
weight 2 and 4
In this section we prove Theorem 6. We will again
need to use the concept of diffuse subsets in Definition
15. The proof of Theorem 6 is similar in its basic idea
to that of Theorem 5. The main obstacle in this case
is the presence of terms of different weight, which does
not allow one to use Lemmas 16-18 directly. This can
be resolved by a slightly more elaborate construction
and applying the more general Lemmas 19-21 which
are proved in the Appendices and Lemmas 16-18 di-
rectly follow as special cases.

Lemma 19 (Generalization of Lemma 16). Let I be
the interaction set of a k-sparse q-local Hamiltonian
on the set of Majorana fermions [2n]. The set I can
be split into (qQ)/2 disjoint, strictly 2q′-local subsets
I(2q′)

α (with α ∈ [Q] and q′ ∈ [q/2]) each of which is
diffuse with respect to I:

I =
q/2⋃

q′=1

Q⋃
α=1

I(2q′)
α . (24)

The parameter Q = q(q −1)(k−1)2 +q(k−1)+2 does
not grow with n. The construction of this splitting can
be done efficiently, in time poly(n).

Lemma 20 (Generalization of Lemma 17). Let a
strictly q′-local I ′ be diffuse w.r.t. q-local k-sparse I
on [2n], such that n > (q2 − 1)k. One can efficiently
construct a matching M of [2n] that is consistent with
I ′ and inconsistent with all interactions I ∈ I\I ′ such
that (1) |I| ≥ q′ or (2) I ̸⊂ Sup(I ′).

Lemma 21 (Generalization of Lemma 18). Let H =∑
I∈I JICI on [2n′] be q-local and I ′ be a diffuse sub-

set of I. Consider a matching M of [2n′]. If M
is consistent with I ′ and inconsistent with I\I ′, one
can efficiently construct a Gaussian state ρI′ with the
property:

Tr(HρI′) =
∑
I∈I′

|JI |. (25)

In Lemma 21, we use n′ instead of n to avoid con-
fusion, as it will also be used for n′ ̸= n. The Lemmas
above are proven in Appendices B-D. With these in
hand, we are ready to proceed with the proof of The-
orem 6.

Theorem (Repetition of Theorem 6). Let H be a
traceless fermionic Hamiltonian on [2n] with maximal
eigenvalue λmax(H). If H is k-sparse with terms of
weight 2 and 4 and 2n > 15k, a Gaussian state ρ can
be efficiently constructed, such that

Tr(Hρ)
λmax(H) ≥ 1

2Q
(26)

with Q = 12(k − 1)2 + 4(k − 1) + 2.

Proof. We make use of the construction in Ref. [12]
which relates a Hamiltonian with weights 2 and 4 on
a set of fermionic modes [2n], that is,

H =
∑

I∈I(2)

JICI +
∑

I∈I(4)

JICI , (27)

to a strictly 4-local Hamiltonian H̃ on an extended
set of fermions [2n + 2]:

H̃ =
∑

I∈I(2)

(−ic2n+1c2n+2)JICI +
∑

I∈I(4)

JICI . (28)

Introducing Ĩ(2) ≡ {(2n + 1, 2n + 2) ∪ I | I ∈ I(2)}, H̃
can be also written as:

H̃ = −
∑

I∈Ĩ(2)

JICI +
∑

I∈I(4)

JICI . (29)

The relation between H̃ and H is via the following
property:

Lemma 22 (Lemma 6 of [12]). For H and H̃ intro-
duced above, λmax(H) = λmax(H̃). Moreover, for any
Gaussian state ρ̃ of 2n + 2 Majorana modes, one can
efficiently compute a Gaussian state ρ of 2n Majorana
modes s.t. Tr(Hρ) ≥ Tr(H̃ρ̃).
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Although strictly 4-local, Hamiltonian H̃ is no
longer sparse since the operators c2n+1 and c2n+2 par-
ticipate in |I(2)| terms (which is generally O(n)). This
prevents a direct application of Lemma 16 to H̃. We
resolve the issue as follows.

Similarly to the proof of Theorem 5, we start by
splitting each set of the original interactions I(2,4) in
H into subsets diffuse w.r.t. I(2)∪I(4): I(2) = ∪αI(2)

α ,
I(4) = ∪αI(4)

α . Each of the two splittings exists and
can be done efficiently, as guaranteed by Lemma 16
(since the original H is sparse). Since I(2) ∪ I(4)

is k-sparse and 4-local, we can bound |{I(2)
α }| < Q,

|{I(4)
α }| < Q for Q = 12(k − 1)2 + 4(k − 1) + 2. In

what follows, we will use the splittings I =
⋃

α I(2)
α ∪⋃

α I(4)
α to construct two Gaussian states ρ̃(I(2)

α ) and
ρ̃(I(4)

α ) on [2n+2] with good properties relative to H̃,
that is,

Tr(H̃ρ̃(I(2,4)
α )) =

∑
I∈I(2,4)

α

|JI | ≡ J(I(2,4)
α ). (30)

With these Gaussian states, we will then show
that the Gaussian state ρ̃(I(2,4)

α ) for q, α =
argmaxq′, α′(J(I(q′)

α′ )) is efficiently constructable and
yields the desired approximation ratio for H̃. We will
then apply Lemma 22 and extend the statement to
the original Hamiltonian H, thus finishing the proof.

Following the outline above, we now move to con-
struct the Gaussian state ρ̃(I(2)

α ). Consider an ansatz
of the form ρ̃ ≡ ρ[2n]σ{2n+1,2n+2}, where ρ[2n] is it-
self a Gaussian state of [2n]. To construct ρ[2n], note
that each I(2)

α is 2−local and diffuse w.r.t. I(2) ∪ I(4)

which is 4-local. Since 2n > 15k by assumptions of
Theorem 6, we can apply Lemma 20 with q = 4 to
construct a matching M(I(2)

α ) that is consistent with
I(2)

α . Since I(2)
α is 2-local, Lemma 20 also implies that

the matching M(I(2)
α ) is inconsistent with the entirety

of I(4) ∪ I(2)\I(2)
α . We then use M(I(2)

α ) in Lemma
21 (substituting n′ = n for n′ used in the Lemma) to
construct ρ[2n] in ρ̃ = ρ[2n]σ{2n+1,2n+2}. This implies
the following expression (using Eq. (28) for H̃):

Tr(H̃ρ̃) = Tr(σ(−ic2n+1c2n+2))
∑

I∈I(2)
α

|JI |. (31)

By choosing σ to be the +1 eigenstate projector of
operator −ic2n+1c2n+2, we arrive at the desired out-
come:

Tr(H̃ρ̃) =
∑

I∈I(2)
α

|JI | = J(I(2)
α ). (32)

The constructed Gaussian state ρ̃ we will denote as
ρ̃(I(2)

α ).
For a diffuse I(4)

α ⊂ I(2) ∪ I(4), we construct the
Gaussian states ρ̃(I(4)

α ) in a different way. First we
use Lemma 20 to construct a matching M(I(4)

α ) of
[2n]. This matching is guaranteed to be consistent
with I(4)

α . However, since I(2) is 2-local and I(4) is

Figure 2: Demonstration of the method in the proof of
Theorem 6. (a) Matching M(I(2)

α ) for I(2)
α , here com-

prised of a single term (shown in green). To ensure
consistency with I(2)

α in H̃, M(I(2)
α ) perfectly matches

these terms and the pair (2n + 1, 2n + 2). The rest
of the vertices are matched so that each pair does not
belong to the same term in I\I(2)

α (grey). (b) Match-
ing M(I(4)

α ) for I(4)
α shown in green. Vertices i1, i2

are chosen not to belong to the same term in I(2),
ensuring no accidental consistency with a term in H̃.
Note the special status of the term from I(2) that is
a subset of the I(4)

α term. From the perspective of H̃,
it is not consistent with M(I(4)

α ) although it coincides
with an edge from M(I(4)

α ). This is due to the inten-
tional absence of the edge (2n+1, 2n+2) in M(I(4)

α ).

4-local, while in general Sup(I(2)) ∩ Sup(I(4)
α ) ̸= ∅,

Lemma 20 implies that M(I(4)
α ) is inconsistent with

I(4)\I(4)
α but may be consistent with some terms in

I(2) (as those I don’t obey the |I| ≥ q′ = 4 condition).
At the same time, we aim to achieve Tr(H̃ρ̃(I(4)

α )) =
J(I(4)

α ) which excludes contributions from I(2). Thus
we cannot extend M(I(4)

α ) to the extended set [2n +
2] directly, as it was done for I(2)

α . Instead, we will
create a matching of [2n+2] using a reduced version of
M(I(4)

α ) which inherits its beneficial properties, and
then complete the matching by making it inconsistent
with Ĩ(2) – eliminating the difficulty described above.

To enable this, we find and mark an edge (i1, i2) ∈
M(I(4)

α ), such that i1 ̸∈ Sup(I(4)
α ). This is always

possible since I(4)
α is diffuse and thus [2n]\Sup(I(4)

α )
is non-empty (cf. Condition 3 in Definition 15).
Note that M(I(4)

α ) is constructed via Lemma 20 and
{i1, i2} ̸⊂ Sup(I(4)

α ). This implies that as a two-
fermion interaction, {i1, i2} is guaranteed not to be-
long to I(2). The latter statement is the key property
of the marked edge (i1, i2) that we will employ mo-
mentarily.

We construct a matching M̃(I(4)
α ) of [2n+2] in two

stages. First we construct an intermediate matching
M ′(I(4)

α ) of [2n+2]\{i1, i2, 2n+1, 2n+2} by removing
the edge from M(I(4)

α ):

M ′(I(4)
α ) = M(I(4)

α )\(i1, i2). (33)
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Since {i1, i2} ̸⊂ Sup(I(4)
α ), we are guaranteed that

M ′(I(4)
α ) is consistent with I(4)

α and inconsistent with
I(4)\I(4)

α (from the construction of M(I(4)
α )). In the

second stage, we complete M̃(I(4)
α ) to the entire set

of 2n + 2 modes by adding two edges: (i1, 2n + 1) and
(i2, 2n + 2):

M̃(I(4)
α ) = M(I(4)

α ) ∪ {(i1, 2n + 1), (i2, 2n + 2)}.
(34)

These new edges render M̃(I(4)
α ) inconsistent with

Ĩ(2). To see it, note that all interactions in Ĩ(2) take
the form I = {j1, j2, 2n + 1, 2n + 2} where {j1, j2} ∈
I(2). By construction {i1, i2} /∈ I(2), thus we have
{j1, j2} ̸= {i1, i2}. As a result, matching M̃(I(4)

α ) of
[2n + 2] is consistent with I(4)

α and inconsistent with
Ĩ(2) ∪ I(4)\I(4)

α . We continue by applying Lemma 21
to such M̃(I(4)

α ) and H̃ (substituting n′ = n + 1 for
n′ used in the Lemma). This efficiently constructs a
Gaussian state ρ̃(I(4)

α ) that yields:

Tr(H̃ρ̃(I(4)
α )) =

∑
I∈I(4)

α

|JI | ≡ J(I(4)
α ), (35)

as desired.
The Gaussian state claimed in Theorem 6 is to

be chosen among the states ρ̃(I(2,4)
α ) whose existence

we’ve proven above. We make the choice by iden-
tifying the highest energy in the respective Gaussian
state: (q, α) = argmax(q,α)J

(q)
α . As we showed, the re-

spective Gaussian state ρ̃(I(q)
α ) can be efficiently con-

structed and the following is guaranteed:

Tr(H̃ρ̃(I(q)
α ))

λmax(H̃)
≥ J(q)

α∑
q′,α′ J(q′)

α′

≥ 1
2Q

. (36)

Here we used that λmax(H̃) ≤
∑

q′,α′ J(q′)
α′ and that

J(q)
α = max(q′,α′)J

(q′)
α′ .

With the state ρ̃(I(q)
α ) on [2n+2] fermions at hand,

we finalize the proof by an application of Lemma 22.
This relates λmax(H) to λmax(H̃) and allows us to
efficiently construct the Gaussian state ρ(I(q)

α ) of [2n],
with the desired property:

Tr(Hρ(I(q)
α ))

λmax(H) ≥ Tr(H̃ρ̃(I(q)
α ))

λmax(H̃)
≥ 1

2Q
. (37)

7 The sparse SYK-4 model
Theorem (Repetition of Theorem 8). Let H be a
SSYK- 4 Hamiltonian in Eq. (5) with expected degree
k = O(1), such that n > 120(k + 1). With probability

at least 1 − 4 exp
[
− e−16(k+1)k3

64(8k+7) n
]
, a Gaussian state ρ

can be efficiently constructed such that

Tr(Hρ)
λmax(H) ≥ 1

Q
, (38)

where Q = 1236 + 2752k + 1536k2.

Proof. In what follows we will omit the normaliza-
tion 1/

√
2kn in Eq. (5), of course this normalization

is irrelevant for lowerbounding the Gaussian approx-
imation ratio. We split H as H = H(k′) + h(k′), s.t.
the Hamiltonian H(k′) is k′-sparse and the residual
Hamiltonian h(k′) contains the rest of H. The term
sets are denoted as follows:

H(k′) =
∑

I∈I(k′)

JICI , h(k′) =
∑

I∈Ī(k′)

JICI , (39)

i.e. I = I(k′) ∪ Ī(k′). To define such a split, we use
the following deterministic algorithm. For every given
Majorana, we list the interactions I ∈ I which involve
that Majorana using a lexicographical order for the
words I = {i1, i2, i3, i4}. For each Majorana where
such a list is longer than k′, we mark all elements
except for the first k′. All terms of H which were
marked this way at least once, we include into h(k′).
The rest of the terms enter H(k′), which by this con-
struction is k′-sparse. To continue the proof we need
a pair of Lemmas. The first lower bounds the total
interaction strength of the SSYK- 4 Hamiltonian:

Lemma 23. With probability at least 1 − 2e− kn
32 , we

have ∑
I∈I

|JI | ≥ kn/8. (40)

This statement is proven in Appendix E, by split-
ting the problem into upper bounding |I| separately
from

∑
I |JI |, and then applying the Chernoff bound

for both.
The second lemma shows that the total interaction

strength of the residual Hamiltonian h(k′) is bounded
from above with high probability:

Lemma 24. If k′ ≥ e2k + 1, we have with probability
at least 1 − 2 exp

[
− e−2k′

k3

64(k′−1) n
]

that

∑
I∈Ī(k′)

|JI | ≤ 4k2
√

k′ − 1
e−k′

n. (41)

Lemma 24 is proven in Appendix E. The key
technical difficulty is bounding the random variable
Ī(k′), which does not reduce to a sum of independent
variables and thus a simple Chernoff bound cannot
be applied. Instead, we apply an exponential version
of Efron-Stein inequality [25].

To build a Gaussian state with finite approxima-
tion ratio, we apply the construction of Theorem 5
to H(k′), which is k′-sparse and strictly 4-local. If n
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is large enough (i.e. n > (q2 − 1)k′ for q = 4), this
state ρ is guaranteed to yield energy Tr(H(k′)ρ) >
1

Q′

∑
I∈I(k′) |JI | for Q′ = 12k′2−20k′+10 (see Eq. (23)

in the proof of Theorem 5). At the same time,
with high probability |Tr(h(k′)ρ)| ≤

∑
I∈Ī(k′) |JI | ≤

4k2
√

k′−1 e−k′
n and

∑
I∈I |JI | ≥ kn

8 (Lemmas 23 and 24).
The resulting approximation ratio is then:

Tr(Hρ)
λmax(H) ≥ Tr(H(k′)ρ) − |Tr(h(k′)ρ)|∑

I∈I |JI |

≥
1

Q′

∑
I∈I |JI | − (1 + 1

Q′ )
∑

I∈Ī(k′) |JI |∑
I∈I |JI |

≥ 1
Q′ − 32(Q′ + 1)ke−k′

√
k′ − 1Q′

. (42)

Crucially, the second term decays exponentially with
k′ and the first term only algebraically (note here the
definition of Q′). We now fix k′ = 8(k +1), consistent
with the requirement k′ ≥ e2k + 1 of Lemma 24. In
this case 32(Q′+1)ke−k′

√
k′−1Q′ as a function of k is always

smaller than 1
2Q′ . This allows us to bound the right

hand side of Eq. (42) as 1
2Q′ , and substituting k′ =

8(k+1) we obtain the bound claimed in the Theorem:

Tr(Hρ)
λmax(H) ≥ 1

1236 + 2752k + 1536k2 . (43)

The earlier assumed condition n > (q2 −1)k′ for q = 4
and k′ translates into n > 120(k + 1). Given the con-
ditions of Lemmas 23 and 24, the bound in Eq. (43)
holds with the probability:

(
1 − 2 exp

[
−e−16(k+1)k3

64(8k + 7) n

])(
1 − 2e− kn

32

)
≥ 1 − 4 exp

[
−e−16(k+1)k3

64(8k + 7) n

]
. (44)

8 Upper bound on Gaussian approxi-
mation ratio for SYK-q Hamiltonians
8.1 Gaussian upper bound for SYK-q models
We consider the expectation value of a SYK-q Hamil-
tonian H with respect to fermionic Gaussian states
and we obtain an upper bound on its expectation
value, with high probability over the random cou-
plings JI .

Lemma (Repetition of Lemma 9). Let H denote a
Hamiltonian drawn from the q-local SYK Hamiltoni-
ans (with q ≥ 4 even and q = O(1)), i.e. the coupling
strengths JI are drawn according to their distribution.
With probability at least 1 − exp(−Ω(n)), H has the

property that, for any fermionic Gaussian state ρ

Tr(Hρ) ≤ (q−1)!! 21/2−q/4q1/2+q/2

×
√

log[q/ log(3/2)] (2n)1−q/4. (45)

Proof. We first use Wick’s theorem on the expectation
of a product of Majorana operators w.r.t. a fermionic
Gaussian state ρ characterized by a correlation matrix
Γ, see Eq. (15). Note that the correlation matrix Γi<j

can be viewed as a real d := (2n2−n)-dimensional vec-
tor. We note that

∑
i<j Γ2

ij = 1
2 Tr(ΓT Γ) ≤ 1

2 Tr(I) =
n so that ∥Γ∥ ≤ n1/2.

Let M(I) be a perfect matching of the indices in
I (|I| even), there are (q − 1)!! such matchings. We
have

Tr(CIρ) = iq/2
∑

M(I)

sign
(
M(I)

)
Tr
(
ci1(M)ci2(M)ρ)

× Tr(ci3(M)ci4(M)ρ) . . . Tr(ciq−1(M)ciq(M)ρ).
(46)

Here we have assumed that for each matching M(I);
i1(M) < i2(M), i3(M) < i4(M), . . ., iq−1(M) <
iq(M), i.e. any sign arising from getting the expres-
sion to this form is absorbed in sign

(
M(I)

)
).

The expectation of H in Eq. (2) w.r.t. fermionic
Gaussian states ρ can be written as:

Tr(Hρ) =
(

2n

q

)−1/2
iq/2

∑
I⊆[2n], |I|=q

JI

[ ∑
M(I)

sign
(
M(I)

)
×

q/2∏
t=1

Tr
(
ci2t−1(M)ci2t(M)ρ

)]
=
(

2n

q

)−1/2 ∑
I⊆[2n], |I|=q

JI

∑
M(I)

sign
(
M(I)

)
×

q/2∏
t=1

Γi2t−1(M),i2t(M). (47)

We note that we can view Tr(Hρ) as a sum of (q−1)!!
terms, one for each matching M of some subset of in-
dices I, i.e. Tr(Hρ) =

∑
M Tr(HM ρ) where HM =∑

I J̃(M, I)
∏q/2

t=1 Γi2t−1(M),i2t(M). We have defined
the q/2-way, d × d × . . . × d, tensor J̃(M, I), whose
entries are equal to either zero (when the indices co-
incide or are not ordered properly) or to a standard
Gaussian random variable. Each JI appears only once
in Tr(HM ρ) and therefore all entries of J̃(M, I) are
statistically independent. We note that sign(M) does
not depend on which (ordered) subset I one chooses.
To bound each term Tr(HM ρ), with high probability,
we invoke the following Lemma:

Lemma 25. (Theorem 1 in [26].) Let A be a random
K-way tensor ∈ Rd1×d2×...×dK and wi be vectors ∈
Rdi and

A(w1, w2, . . . , wK) :=
∑

k1,...,kK

Ak1,...,kK
(w1)k1 . . . (wq/2)kK

.
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If we have for each fixed unit vector wi/∥wi∥ (i ∈
{1, . . . , K}):

Pr
(

|A(w1/∥w1∥, . . . , wK/∥wK∥)| ≥ t
)

≤ 2 exp
(

− t2/(2σ2)
)

, (48)

then the spectral norm ∥|A∥| :=
maxw1,...,wK

A
(
w1/∥w1∥, . . . , wK/∥wK∥

)
(with

wi ∈ Rdi) can be bounded as follows:

∥|A∥|≤
[
8σ2
[( K∑

i=1
di

)
log
[
2K/ log(3/2)

]
+ log

(2
δ

)]] 1
2

,

with probability at least 1 − δ.

To apply the Lemma, note that the vectors wi

correspond to Γi<j viewing i < j as a single in-
dex and we can use their norm ∥Γ∥ ≤ n1/2. In
addition, for each entry in the tensor we have
E
[

exp
(
tJ̃(M, I)k1,...,kq/2

)]
≤ exp

(
t2/2

)
(for t ≥ 0)

as the entry is zero or a Gaussian variable with vari-
ance 1 and mean zero. Using Chernoff’s bound and
the fact that all entries of J̃(M, I) are statistically in-
dependent, we conclude that for any set of real vectors
w1, . . . , wq/2 one has

Pr
[∣∣∣ ∑

k1,...,kq/2

J̃(M, I)k1,...,kq/2

(w1)k1

∥w1∥
. . .

(wq/2)kq/2

∥wq/2∥

∣∣∣≥ t
]

≤ 2 exp(−t2/2). (49)

Therefore, for each term HM we can apply Lemma 25
and, using K = q/2 and σ = 1, obtain∣∣∣∣∣∣J̃(M, I)

∣∣∣∣∣∣ ≤
[
4q(2n2−n) log

[
q/ log(3/2)

]
+ 8 log

(
2δ−1)]1/2

, (50)

with probability at least 1 − δ. Then we can first
bound

max
ρ Gaussian

Tr(Hρ) ≤
(

2n

q

)−1/2
∥Γ∥q/2

∑
M

∣∣∣∣∣∣J̃(M, I)
∣∣∣∣∣∣

≤
(
q/

√
2
)q/2(2n)−q/4

∑
M

∣∣∣∣∣∣J̃(M, I)
∣∣∣∣∣∣,

(51)

where we have used that
(2n

q

)
≥ (2n/q)q. We can now

combine the upper bound in Eq. (50) and Eq. (51).
Applying the union bound, we have with probability
at least 1 − (q − 1)!! δ, that

max
ρ Gaussian

Tr(Hρ) ≤ (q − 1)!!
[
21−q/2qq+1

×
[
(2n)2−q/2 − (2n)1−q/2] log

[
q/ log(3/2)

]
+ 23−q/2qq(2n)−q/2 log

(
2δ−1)]1/2

. (52)

Therefore, we can take δ = exp
(

− Ω(n)
)

such that,
asymptotically, we have (assuming q = O(1)):

max
ρ Gaussian

Tr(Hρ) ≤ (q − 1)!! 21/2−q/4q1/2+q/2

×
√

log[q/ log(3/2)] (2n)1−q/4, (53)

with probability at least 1 − δ. Note that in deriv-
ing this upper bound we only use the norm of the
correlation matrix Γ, hence this upper bound is not
necessarily achievable by a Gaussian state as the con-
straint ΓT Γ ≤ I imposes more conditions on Γ than
just an upper bound on its norm.

8.2 Maximum eigenvalue lower bound for q-
local SYK Hamiltonians
To show that fermionic Gaussian states cannot
achieve a constant approximation ratio for q ≥ 4 SYK
models, we derive a lower bound on the maximum
eigenvalue of the Hamiltonians H in Eq. (2):

Lemma (Repetition of Lemma 10). For the class
of q-local SYK Hamiltonians (with even q ≥ 4) in
Eq. (2), λmax(H) = Ω(

√
n) with probability at least

1 − exp
(

− Ω(n)
)

over the draw of Hamiltonians.

The remainder of this section will be devoted to
proving this Lemma. The techniques used are sim-
ilar to those used in Section 6 of Ref. [2]. We note
that throughout this section, we shall use C to de-
note a quantity that is constant in n or is bounded
from above and below by a constant in n, and it will
generally differ from appearance to appearance (for
the sake of clarity). Importantly, C can contain fac-
tors of q (note that q = O(1)).

We start by obtaining a lower bound on the max-
imum eigenvalue of a so-called 2-colored SYK model
and will use this to prove Lemma 10. The Hamilto-
nian of such a 2-colored SYK model is slightly dif-
ferent from the standard SYK model Hamiltonian in
Eq. (2). We divide the 2n Majorana operators into
two subsets, with sizes n1 and n2 (n2 ≤ n1), and de-
note the operators in the first set by ϕ1, . . . , ϕn1 and
the ones in the second set by χ1, . . . , χn2 . The Hamil-
tonian is now given by1:

H(2) = i
√

n2

n2∑
j=1

τjχj , (54)

where

τj =
(

n1

q − 1

)−1/2
iq/2−1

∑
S⊆[n1]

|S|=q−1

JS,j ϕS . (55)

Here ϕS the product of q − 1 of the ϕ Majorana oper-
ators in subset S, and JS,j are independent Gaussian

1We denote Hamiltonians from the class of 2-colored SYK
Hamiltonians by H(2).
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random variables. The subset S labels an ordered
subset of q − 1 Majorana operators (note that these
are different from the subsets I defined before that
correspond to ordered subsets of q Majorana opera-
tors). We note that the (Hermitian) τj operators do
not necessarily obey {τj , τk} = 2δjkI, but instead sat-
isfy E({τj , τk}) = −iq−2δjkI.

Lemma 26. Let {ϕi}n1
i=1 and {χi}n2

i=1 be n1 +n2 Ma-
jorana operators. For the class of q-local 2-colored
SYK Hamiltonians (with even q ≥ 4) in Eq. (54) de-
fined in terms of these Majorana operators, the maxi-
mum eigenvalue of the Hamiltonian λmax(H) is lower
bounded by C

√
n (with C a constant) with probability

at least 1 − exp
(

− Ω(n)
)

over the draw of Hamiltoni-
ans.

Proof. We introduce a new set of Majorana opera-
tors (again of size n2) σ1, . . . , σn2 (which do obey
{σj , σk} = 2δjkI) and we define the quadratic Hamil-
tonian H ′:

H ′ = i
√

n2

n2∑
j=1

σjχj . (56)

This quadratic Hamiltonian H ′ is optimized by the
fermionic Gaussian state ρ0 = 1

2n2+n1/2

∏n2
j=1

(
I +

iσjχj

)
, which achieves Tr(H ′ρ0) = √

n2. The idea
is now to construct a new state ρθ obtained from ρ0
by applying a unitary transformation to ρ0, and to
find a lower bound for the expectation value of H(2)

w.r.t. ρθ.

ρθ := e−θζρ0e+θζ , where ζ :=
n2∑

j=1
τjσj and θ ∈ R.

(57)
The expectation value of H(2) w.r.t. ρθ is:

Tr(H(2)ρθ) = Tr(H(2)
θ ρ0) ,

where H
(2)
θ := e+θζH(2)e−θζ . (58)

Using the BCH expansion of Hθ and Tr(H(2)ρ0) = 0
, we obtain:

Tr(H(2)ρθ )= θ Tr([ζ, H(2)]ρ0)

+ θ2
∫ 1

0
(1 − s)Tr([ζ, [ζ, H(2)]]ρsθ)ds

= θ Tr([ζ, H(2)]ρ0)

+ θ2 E
s∼[0,1]

[
(1−s)Tr([ζ, [ζ, H(2)]]ρsθ)

]
≥θ Tr([ζ,H(2)]ρ0)−θ2∥[ζ,[ζ, H(2)]]∥, (59)

where we have used the triangle inequality and ∥·∥ de-
notes the spectral norm. To lower bound Tr(H(2)ρθ),
one now has to (i) lower bound θ Tr([ζ, H(2)]ρ0) and
(ii) upper bound θ2 ∥ [ζ, [ζ, H(2)]] ∥. This proof tech-
nique is similar in spirit to the proof in [27], although
their proof is for qubit Hamiltonians with bounded-
degree interactions.

First, we find a lower bound for θ Tr([ζ, H(2)]ρ0)
which holds with high probability:

Tr([ζ, H(2)]ρ0) = i
√

n2

n2∑
j,k=1

Tr([τjσj , τkχk]ρ0)

= i
√

n2

n2∑
j=1

Tr([τjσj , τjχj ]ρ0)

= 2i
√

n2

n2∑
j=1

Tr(σjχj τ2
j ρ0)

= 2
√

n2
2−(n2+n1/2)

n2∑
j=1

Tr(In2 τ2
j )

= 2(−1)q/2
√

n2
(

n1
q−1
) n2∑

j=1

∑
S⊆[n1]

|S|=q−1

(
JS,j

)2
, (60)

where we have used that Tr([τjσj , τkχk]ρ0) is non-zero
only for j = k, and the definition of τj . The quantity
Tr([ζ, H(2)]ρ0) is thus a chi-squared random variable
(up to normalization factors and potentially a sign)
with n2

(
n1

q−1
)

degrees of freedom and its expectation
value is given by:

E
[
Tr([ζ, H(2)]ρ0)

]
= 2(−1)q/2

√
n2
(

n1
q−1
) n2∑

j=1

∑
S⊆[n1]

|S|=q−1

E
[(

JS,j

)2]
= 2

√
n2 (−1)q/2, (61)

where we have used that E
[(

JS,j

)2] = 1. We note
that in order to obtain a positive first-order contri-
bution to Tr(H(2)ρθ), one should take θ positive for
q/2 even, and one should take θ negative for q/2 odd.
Since Tr([ζ, H(2)]ρ0) is a chi-squared random variable
with n2

(
n1

q−1
)

degrees of freedom, the following tail
bounds can be obtained [28]:

Pr
[
Tr([ζ, H(2)]ρ0)≤

√
n2
]

≤ exp
(
−Ω
(
n2 nq−1

1
))

, (62)

for q/2 even, and

Pr
[
Tr([ζ, H(2)]ρ0)≥−

√
n2
]

≤ exp
(
−Ω
(
n2 nq−1

1
))

,

(63)
for q/2 odd. The random variable Tr([ζ, H(2)]ρ0) is
thus equal to 2√

n2(−1)q/2 in expectation and the
probability that – for any even q ≥ 4 – its norm is
smaller than half the norm of this expectation is at
most exponentially small in the system size.

In order to upper bound θ2 ∥ [ζ, [ζ, H(2)]] ∥, we first
evaluate [ζ, [ζ, H(2)]]:
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[ζ, [ζ, H(2)]]

= iq/2√
n2
(

n1
q−1
) n2∑

j=1

∑
S⊆[n1]

|S|=q−1

JS,j [ζ, [ζ, ϕSχj ]]

= iq/2√
n2
(

n1
q−1
) n2∑

j,k,l=1

∑
S⊆[n1]

|S|=q−1

JS,j [τkσk, [τlσl, ϕSχj ]]

= i3q/2−2√
n2
(

n1
q−1
)3

n2∑
j,k,l=1

∑
S,S′,S′′

JS,jJS′,kJS′′,l

× [ϕS′
σk, [ϕS′′

σl, ϕSχj ]], (64)

where the final sum over S, S′, S′′ is over all
S, S′, S′′ ⊆ [n1] with |S| = |S′| = |S′′| = q − 1 (all
sums over S, S′, S′′ will implicitly have this constraint
from now on). The nested commutator in this ex-
pression simplifies as follows (note that the product
of i3q/2−2 and the nested commutator is Hermitian):

i3q/2−2[ϕS′
σk, [ϕS′′

σl, ϕSχj ]] =

C(ϕKσkσlχj)H , if (|S′′ ∩ S| is odd)
∧ (|S′ ∩ (S′′△S)| + δk,l is odd)

∧ (|S| = |S′| = |S′′| = q − 1),

0, otherwise,
(65)

where (ϕKσkσlχj)H denotes a Hermitian version of
ϕKσkσlχj (i.e., ϕKσkσlχj up to potential integer
powers of i) and K := (S△S′△S′′) ∪ (S ∩ S′ ∩ S′′)
(note that |K| is odd). We therefore have:

[ζ, [ζ, H(2)]] =

C
1

√
n2

(
n1

q − 1

)−3/2 n2∑
j,k,l=1

∑
S,S′,S′′

JS,jJS′,kJS′′,l

×
(

(ϕKσkσlχj)Hf(S, S′, S′′, j, k, l)
)

, (66)

where we have defined

f(S, S′, S′′, j, k, l) :=

1, if (|S′′ ∩ S| is odd)
∧ (|S′ ∩ (S′′△S)| + δk,l is odd)

∧ (|S| = |S′| = |S′′| = q − 1),

0, otherwise.

(67)

We now wish to find an upper bound on the ex-
pected value of the spectral norm of [ζ, [ζ, H(2)]]. And
in addition, we would like to show that the spectral

norm exceeds twice the value of this upper bound with
probability that is at most exponentially small in the
system size. To establish this, we will have to show
the following:

E
(

∥ [ζ, [ζ, H(2)]] ∥k
)

≤ αk, (68)

for even k proportional to the system size and for
some α. Eq. (68) implies two things: First, since
E
(
∥ [ζ, [ζ, H(2)]] ∥

)k ≤ E
(
∥ [ζ, [ζ, H(2)]] ∥k

)
(using

Jensen’s inequality), it implies E
(
∥ [ζ, [ζ, H(2)]]∥

)
≤ α

(i.e., α is the upper bound on the expected value of
the spectral norm). Second, applying Markov’s in-
equality to the random variable ∥ [ζ, [ζ, H(2)]] ∥ and
using Eq. (68) yields

Pr
[
∥ [ζ, [ζ, H(2)]] ∥ ≥ α′

]
=Pr

[
∥ [ζ, [ζ, H(2)]] ∥k

≥ (α′)k
]

≤
(
α/α′)k, (69)

with α′ ≥ α. So taking α′ = 2α and k equal to the
system size 2n (= 2n2+n1) yields the desired result of
the probability of the spectral norm exceeding twice
the value of the upper bound being at most exponen-
tially small in the system size.

For convenience, we define A := [ζ, [ζ, H(2)]]. Since
A is Hermitian (by direct calculation), the spectrum
of A2 is non-negative and therefore we have ∥A∥k =
λmax(A2)k/2 ≤ Tr(Ak) (for even k). Using Eq. (66),
we express A as C

∑
S̃⊆[2n2+n1] QS̃CS̃ for convenience,

where C is a non-negative constant, QS̃ are real ran-
dom variables, and CS̃ denotes a Hermitian (even)
Majorana monomial. In addition, we define the ran-
dom variable (which is obtained by replacing Majo-
rana monomials in A with 1)

A(1) := C
∑

S̃⊆[2n2+n1]

QS̃

= C
1

√
n2

(
n1

q − 1

)−3/2 n2∑
j,k,l=1

∑
S,S′,S′′

JS,jJS′,kJS′′,l

× f(S, S′, S′′, j, k, l). (70)

If we now assume that

E
(
QS̃1

. . . QS̃k

)
≥ 0 and

E
(

A(1)k
)

/αk ≤ 1/2n2+n1/2, (71)

both hold for some even k and some constant α (note
that the first condition will automatically be satisfied
since {JS,j} is a collection of independent standard
Gaussian random variables), then for even k we can
establish
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E
(
∥A∥

)k ≤ E
(
∥A∥k

)
≤ E

(
Tr(Ak)

)
= Ck

∑
S̃1,...,S̃k

⊆[2n2+n1]

E
(
QS̃1

...QS̃k

)
Re
[
Tr
(
CS̃1

...CS̃k

)]
≤ 2n2+n1/2 Ck

∑
S̃1,...,S̃k

⊆[2n2+n1]

E
(
QS̃1

...QS̃k

)
= 2n2+n1/2 E

(
A(1)k

)
≤ αk, (72)

where the first inequality is again Jensen’s inequal-
ity and we have also used that E

(
Tr(Ak)

)
is real

(since A is Hermitian) and that Re
[
Tr
(
CS̃1

...CS̃k

)]
is always at most 2n2+n1/2 (note that Tr

(
CS̃1

...CS̃k

)
equals 2n2+n1/2 up to integer powers of i, but imag-
inary contributions vanish in the sum). This estab-
lishes Eq. (68), and thereby the desired result. There-
fore, what is left is to show that the second condition
in Eq. (71) is satisfied.

From this point onward, we shall take n1 and n2
proportional to n, where 2n = 2n2 + n1 denotes the
total number of Majorana operators. We now show
that the second condition in Eq. (71) is satisfied for
k = 2n and α = C

√
n. In order to do so, we show that

E
(
A(1)2n

)
≤ (C

√
n)2n (where the factor of 2n2+n1/2

is absorbed in C2n). To that end, we thus need to find
an upper bound on the (2n)th moment of the random
variable A(1) in Eq. (70).

In Appendix F, we derive this upper bound and
indeed show that E

(
A(1)2n

)
≤ (C

√
n)2n. Therefore,

E
(
∥ [ζ, [ζ, H(2)]] ∥

)
≤ C

√
n and

Pr
[
∥ [ζ, [ζ, H(2)]] ∥ ≥ 2C

√
n
]

≤ exp
(
−Ω(n)

)
, (73)

which is the desired result.
Combining Eq. (59), Eqs. (62),(63) and Eq. (73),

we conclude that there exists a θ = O(1) such that

Tr(H(2)ρθ) ≥ C
√

n, (74)

with probability at least 1 − exp
(
−Ω(n)

)
.

What is left is to show that this result also holds
for the standard SYK Hamiltonian. This translation
from 2-colored SYK Hamiltonian to standard SYK
Hamiltonian is given in Lemma 27 below, and its
proof is given in Appendix G.

Lemma 27. For the class of q-local SYK Hamilto-
nians (with even q ≥ 4) in Eq. (2), ρθ (defined in
Eq. (57)) achieves Tr(Hρθ) ≥ C

√
n with probability

at least 1 − exp
(

− Ω(n)
)

over the draw of Hamilto-
nians, provided that ρθ achieves Tr(H(2)ρθ) ≥ C

√
n

(with H(2) the 2-coloured SYK Hamiltonian defined
in Eq. (54)) with probability at least 1 − exp

(
− Ω(n)

)
over the draw of 2-coloured Hamiltonians.

This also concludes the proof of Lemma 10, i.e.,
that λmax(H) = Ω(

√
n) with probability at least

1 − exp
(

− Ω(n)
)

over the draw of standard SYK
Hamiltonians.
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tion to random graphs. Cambridge University
Press, 2016. URL https://doi.org/10.1017/
CBO9781316339831.

[23] Dorit Aharonov, Itai Arad, and Thomas Vidick.
The quantum PCP conjecture. ACM SIGACT
News, 44:47–79, 2013. URL https://doi.org/
10.48550/arXiv.1309.7495.

[24] Sergey Bravyi, Anirban Chowdhury, David Gos-
set, and Pawel Wocjan. On the complexity of
quantum partition functions, 2021. URL https:
//doi.org/10.48550/arXiv.2110.15466.
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A Extensive sets of all anti-commuting terms
One can easily prove that when one maps a dense, non-sparse, fermionic model such as the SYK model onto
a qubit Hamiltonian, the locality of the resulting Hamiltonian has to grow as some function of n, due to the
following Lemma:

Lemma 28. Any set of all-mutually anti-commuting Pauli strings {Qi}m−1
i=0 , each of weight at most k, on n

qubits has cardinality m bounded as
m ≤ 3 × 2k(3k−1), (75)

assuming that k(k − 1) < n.

Proof. Take Q0 of weight at most k and let m − 1 Paulis Qi anticommute with it. We can represent each Pauli
string as a 2n-bit string y, say Q0 = yxyz where the Hamming weight |yx| ≤ k, |yz| ≤ k. Any other Qi in the set
has to anti-commute with Q0 on the support of the string y. First, note that the set of strings of length at most
2k which have symplectic inner product equal to 1 (so anti-commute) to a given string of length 2k is at most
22k−1. Now we pick the largest subset M1 of the set of elements Q1, . . . Qm−1 such that all elements in the
subset act identically on the support of Q0, i.e. are represented by the same string of length at most 2k while
differing beyond the support of Q0. Let the cardinality of this set be |M1| = m1 ≤ m−1 and m1 ≥ m−1

22k−1 ≥ m
22k

as the largest set should at least be a fraction 1/22k−1 of the total. So now we consider this set M1 and their
action on the remaining n−k qubits (outside the support of Q0), where these elements all have to anti-commute.
In addition, each element has Pauli weight at most k − 1 (as we had to overlap with at least one Pauli with
Q0). We then reapply this argument on this set, leading to a new set M2 with |M2| = m2 ≥ m1−1

22(k−1)−1 acting
on n−2k qubits and having weight k −2 etc. We can reiterate this process l times so that the remaining weight
of the set of Pauli strings Ml has k − l = 1. This implies that Ml can contain at most 3 elements since they
all need to anti-commute on a single qubit (assuming that n − kl > 0 or n − k(k − 1) > 0). So we have

3 ≥ |Ml=k−1| = mk−1 ≥ m

4k+(k−1)+...+l
= m

2k(3k−1) . (76)

The SYK-4 model contains large (of size n) sets of mutually anti-commuting terms. An example is the set of
all terms which only overlap on one fixed Majorana. Lemma 28 then shows that any fermion-to-qubit mapping
(an encoding possibly using more qubits) will require the weight of some of the resulting Pauli terms to grow
as a function of n. Note that the actual mapping by Bravyi and Kitaev [4] with k = O(log n) shows that the
upper bound in Eq. (75) is not completely tight.

Another straightforward observation on the energy scaling of a model where all terms anti-commute is that
λmax does not necessarily scale with the number of terms, as captured by the following Lemma

Lemma 29. Let H =
∑

i∈I JICI where the {CI} are a set of all-mutually anti-commuting Majorana operators
on [2n] (each CI has even support). Then

λmax(H) =
√∑

I

J2
I . (77)

Proof. We have H =
∑

I JICI =
√∑

I J2
I

∑
I βICI with

∑
I β2

I = 1. Take the state ρ = 1
2n (I +

∑
I βICI)

and thus Tr(Hρ) =
√∑

I J2
I

∑
I β2

I =
√∑

I J2
I . This is the maximal eigenvalue that can be reached since one

can map each cI onto a single Majorana operator ci(I) as these sets form identical algebras. Then we can use
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the normalization of βI to view
∑

i βIci(I) = c̃1 with single Majorana operator c̃1 (this is an example of the
transformation in Eq. (9)). A single Majorana c̃1 has spectrum ±1 and hence the (hugely degenerate) spectrum
of H is simply ±

√∑
I J2

I .

Thus, if all JI are of similar strength, we observe that the overall maximal energy scales as
√

|I| rather than
|I|.

B Splitting sparse Hamiltonians into diffuse interaction sets
Lemma (Repetition of Lemma 19). Let I be the interaction set of a k-sparse q-local Hamiltonian on the set
of fermions [2n]. The set I can be split into (qQ)/2 disjoint, strictly 2q′-local subsets I(2q′)

α (with α ∈ [Q] and
q′ ∈ [q/2]) each of which is diffuse with respect to I:

I =
q/2⋃

q′=1

Q⋃
α=1

I(2q′)
α . (78)

The parameter Q = q(q − 1)(k − 1)2 + q(k − 1) + 2 does not grow with n. The construction of this splitting can
be done efficiently, in time poly(n).

Proof. Consider a graph G with vertices corresponding to interaction sets I ∈ I, where two interaction sets I1, I2
are connected with an edge if either 1. they share at least one Majorana operator or 2. I1 and I2 both share
Majorana operators with another set I ′ ̸= I1, I2. For a q-local k-sparse Hamiltonian, G has maximal degree Q′

with Q′ = q(q − 1)(k − 1)2 + q(k − 1). Here q(k − 1) is the maximal number of interactions I2 directly sharing
a Majorana fermion with any given interaction I1, and q(q − 1)(k − 1)2 is the maximal number of interactions
satisfying condition 2. Since a Q′-sparse graph is vertex-colorable by at most (Q′ + 1) colors [29], we can split
I into (Q′ + 1) subsets Iα, s.t. any two interactions I1, I2 from a set Iα are not connected by an edge in G. By
definition of G, this amounts to sets Iα satisfying the first two conditions of Definition 15. A greedy algorithm
can be used to assign the vertices G with (Q′ + 1) colors, so Iα can be constructed efficiently.

Each interaction set Iα can contain terms of different weight. For each value of α we define strictly 2q′-local
sets I(2q′)

α (for q′ = 1, .., q/2) by restricting to the strictly 2q′-local part of Iα. This gives a splitting of I into
efficiently constructable subsets I(2q′)

α :

I =
q/2⋃

q′=1

Q′+1⋃
α=1

I(2q′)
α , (79)

where all sets I(2q′)
α satisfy conditions 1 and 2 in Definition 15.

The rest of the proof is concerned with the third condition of a diffuse set in Definition 15, for all sets I(2q′)
α .

This means ensuring that for all values of α and q′, the support size |Sup(I(2q′)
α )| is smaller than 2n q

q+1 . Fix
q′ and consider sets I(2q′)

α for ∀α ∈ [Q′ + 1].
Consider the case where |Sup(I(2q′)

α )| < 2n q
q+1 does not hold for at least one value of α, which we set to be

α = Q′ + 1 without loss of generality.
Let us prove that the violation |Sup(I(2q′)

β )| ≥ 2n q
q+1 cannot hold for any β ̸= Q′ + 1. Firstly, no interaction

I from I(2q′)
β can be a strict subset of an interaction in I(2q′)

Q′+1 or share Majoranas with two terms in I(2q′)
Q′+1

simultaneously. The first scenario is excluded since I(2q′)
Q′+1 and I(2q′)

β are both strictly 2q′-local and the second
scenario is excluded because I(2q′)

Q′+1 satisfies condition 2 of Definition 15. From these two facts it follows that
each interaction in I(2q′)

β must involve at least one Majorana from [2n]\Sup(I(2q′)
Q′+1). This implies

|Sup(I(2q′)
β )| ≤ 2q′|[2n]\Sup(I(2q′)

Q′+1)|, (80)

This can be further bounded as |Sup(I(2q′)
β )| ≤ q|[2n]\Sup(I(2q′)

Q′+1)|, because 2q′ ≤ q. Since we assumed
|Sup(I(2q′)

Q′+1)| ≥ 2nq/(q + 1) and thus |[2n]\Sup(I(2q′)
Q′+1)| < 2n/(q + 1), it follows that |Sup(I(2q′)

β )| ≤
q|[2n]\Sup(I(2q′)

Q′+1)| < 2nq/(q + 1). Thus we have shown that for a given q′, the condition 3 of Definition
15 – indeed cannot be violated by more than one I(2q′)

α .
Consider all q′ for which there exists a violation |Sup(I(2q′)

Q′+1)| ≥ 2n q
q+1 . Since q

q+1 > 1
2 for any q, this violation

can be fixed by splitting I(2q′)
Q′+1 in half. Introduce non-overlapping sets Ĩ(2q′)

Q′+1 and ˜̃I(2q′)
Q′+1 of sizes ⌊|I(2q′)

Q′+1|/2⌋
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Figure 3: Example of the construction from the proof of Lemma 20. (a) The q-local set of interactions I (q = 4).
Highlighted in green is diffuse and strictly q′-local I ′ (q′ = 4), in red are the interactions in Sup(I ′) with weight
less than q′, in grey are the rest of interactions in I. The goal is to create a matching M consistent with
green-colored terms, inconsistent with grey-colored terms, and with no guaranteed relation to the red-colored
terms. (b) Matching M ′ on Sup(I ′), consistent with I ′ by construction. Ensuring inconsistency with all red-
colored terms is in general impossible. For example, consider the three overlapping red-colored terms at the
top center. (c) Completing M = M ′ ∪ M ′′ with a matching M ′′ on [2n]\Sup(I ′), ensuring inconsistency with
all grey-colored terms. For this, the vertices are matched only if they belong to different interactions.

and ⌈|I(2q′)
Q′+1|/2⌉: I(2q′)

Q′+1 = Ĩ(2q′)
Q′+1 ∪ ˜̃I(2q′)

Q′+1. By implication, |Sup(˜̃I(2q′)
Q′+1)| ≤ 2n/2 ≤ 2nq/(q + 1) and similarly

|Sup(Ĩ(2q′)
Q′+1)| ≤ 2nq/(q + 1). We conclude the construction by modifying the set I(2q′)

α for the considered q′: we
redefine I(2q′)

Q′+1 ≡ Ĩ(2q′)
Q′+1, and introduce one extra interaction set I(2q′)

Q′+2 ≡ ˜̃I(2q′)
Q′+1.

The proof can now be finalized. Performing the above procedure for all q′ where a violation was present, and
completing the {I(2q′)

α } without such violations with I(2q′)
α=Q′+2 = ∅, we arrive at the splitting

I =
q/2⋃

q′=1

Q⋃
α=1

I(2q′)
α , (81)

where Q = Q′ + 2 = q(q − 1)(k − 1)2 + q(k − 1) + 2. Interaction sets I(2q′)
α are diffuse (satisfying all three

conditions of Definition 15) with respect to I for all q′ and α. The construction of I(2q′)
α is efficient, because

each step can be implemented in time poly(n).

C Majorana matchings from diffuse interaction sets
Lemma (Repetition of Lemma 20). Let a strictly q′-local I ′ be diffuse w.r.t. q-local k-sparse I on [2n], such
that n > (q2 −1)k. One can efficiently construct a matching M of [2n] that is consistent with I ′ and inconsistent
with all interactions I ∈ I\I ′ such that (1) |I| ≥ q′ or (2) I ̸⊂ Sup(I ′).

Proof. We first note that for I ∈ I\I ′ the condition |I| ≥ q′ implies I ̸⊂ Sup(I ′). Indeed, there are two possible
options for I ∈ I\I ′ such that I ⊂ Sup(I ′). The first option is that I is a strict subset of a single interaction
from I ′. However, this is not possible given |I| ≥ q′, because I ′ is q′-local. The second option is for I to share
Majorana modes with two or more interactions in I ′. This is ruled out because I ′ is diffuse with respect to I
(cf. Condition 2 in Definition 15). The above implies that it is sufficient to construct the matching M that is
consistent with I ′ and inconsistent with {I ∈ I\I ′|I ̸⊂ Sup(I ′)}.

We construct M in two steps. First we construct a matching M ′ of Sup(I ′) (note |Sup(I ′)| is always even).
Next, we construct a matching M ′′ of the remaining Majorana modes [2n]\Sup(I ′). The desired matching of
[2n] is the union M = M ′ ∪ M ′′.

To construct M ′, we match vertices of each I ∈ I ′ in an arbitrary way: for every such I = {i1, ..iq′},
{i2l−1, i2l} ∈ M ′ for l ∈ [1, ..q′/2]. This matching is always possible, since I ′ is diffuse and thus different
interactions from I ′ do not overlap. Thus constructed M ′ (and therefore also M = M ′ ∪ M ′′) is explicitly
consistent with all I ∈ I ′ .

To construct a matching M ′′ of [2n]\Sup(I ′), we aim to ensure that no (m1, m2) ∈ M ′′ is a subset of any
interaction in I. For this, consider a ‘permitted edge’ graph P with vertices [2n]\Sup(I ′), and edges inserted
between every pair (i1, i2) unless they belong to the same interaction in I. We aim to construct M ′′ as a
perfect matching of P. Note that since I is q-local and k-sparse, the graph P has degree bounded from below as
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|[2n]\Sup(I ′)|− (q − 1)k. At the same time, since I ′ is diffuse, we’re guaranteed by Condition 3 in Definition 15
that |[2n]\Sup(I ′)| ≥ 2n

q+1 . Therefore, since n > (q2 −1)k by assumption, the degree of the vertices in P is lower
bounded as |[2n]\Sup(I ′)| − (q − 1)k ≥ |[2n]\Sup(I ′)|/2 + n

q+1 − (q − 1)k > |[2n]\Sup(I ′)|/2. Given this lower
bound, we apply Dirac’s theorem [30], which yields an efficiently constructable Hamiltonian cycle in the graph
P. Matching M ′′ is then obtained by pairing the sequential vertices in this cycle, making it a perfect matching
of P. By definition of P, M ′′ is guaranteed to contain at least one outgoing edge from every interaction in
{I ∈ I\I ′|I ̸⊂ Sup(I ′)}. This makes M = M ′ ∪ M ′′ inconsistent with {I ∈ I\I ′|I ̸⊂ Sup(I ′)}, as desired.

Lemma 17, which is used in the proof of Theorem 5, is a special case of Lemma 20. To obtain Lemma 17,
one sets q′ = q and considers strictly q-local I instead of simply q-local. In this case all terms in I\I ′ satisfy
the first condition of the Lemma, and therefore the constructed M is inconsistent with the entirety of I\I ′.

D Matchings and Gaussian states
Lemma (Repetition of Lemma 21). Let H =

∑
I∈I JICI on [2n′] be q-local and I ′ be a diffuse subset of I.

Consider a matching M of [2n′]. If M is consistent with I ′ and inconsistent with I\I ′, one can efficiently
construct a Gaussian state ρI′ with the property:

Tr(Hρ(I ′)) =
∑
I∈I′

|JI |. (82)

Proof. For the given matching M , consider its associated Gaussian state pure ρ(M, λ⃗) of the form:

ρ(M, λ⃗) = 1
2n

Π{m1,m2}∈M(I + iλ(m1,m2)cm1cm2). (83)

Lemma 14 implies that the contribution to Tr(Hρ(M, λ⃗)) from inconsistent interactions I\I ′ vanishes and
contributions from I ′ yield:

Tr(Hρ(M, λ⃗)) =
∑
I∈I′

JIsign(π)
∏

l∈{1,..,|I|/2}

λ(iπ(2l−1),iπ(2l)). (84)

The proof is completed by choosing an appropriate value for λ⃗. Since I ′ is diffuse, by Condition 1 of Definition 15,
distinct interactions from I ′ do not share Majorana fermions. This means that the values λ(m1,m2) for different I
in Eq. (84) can be chosen independently. In particular, by picking appropriate λ(m1,m2) = ±1, one can eliminate
the sign of JIsign(π) and achieve a contribution |JI | for each I ∈ I ′. Note that this procedure can be done
efficiently, as it is simply a matter of choosing at most n ±1 values by checking the sign of most |I ′| terms.
Denoting the thus chosen ρ(M, λ⃗) as ρ(I ′), this yields Eq. (82).

A special case of Lemma 21 is Lemma 18 used in the proof of Theorem 5.

E Concentration bounds for sparse SYK-4
Here we derive the concentration bounds for the SSYK- 4 Hamiltonian that were used in the proof of Theorem 8
(Section 7). We first prove an auxiliary Lemma that will be used later in this Section, allowing to separate the
statistics of interaction selection and interaction strength:

Lemma 30. For a ∈ [D], let Xa be i.i.d. Bernoulli random variables Xa ∼ Bern(p) and Ja i.i.d. Gaussian
random variables Ja ∼ N(0, 1). Then for any integer d ∈ [D]

P

[
D∑

a=1
Xa|Ja| < y

]
≤ P

[
D∑

a=1
Xa < d

]
+ P

[
d∑

a=1
|Ja| < y

]
, (85)

P

[
D∑

a=1
Xa|Ja| > y

]
≤ P

[
D∑

a=1
Xa > d

]
+ P

[
d∑

a=1
|Ja| > y

]
. (86)
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Proof. To prove Eq. (85), first show

P

[
D∑

a=1
Xa|Ja| ≥ y

]
=

D∑
d′=1

P

[
D∑

a=1
Xa = d′

]
P

 d′∑
a=1

|Ja| ≥ y


≥

D∑
d′=d

P

[
D∑

a=1
Xa = d′

]
P

 d′∑
a=1

|Ja| ≥ y


≥

(
D∑

d′=d

P

[
D∑

a=1
Xa = d′

])
P

[
d∑

a=1
|Ja| ≥ y

]

= P

[
D∑

a=1
Xa ≥ d

]
P

[
d∑

a=1
|Ja| ≥ y

]
. (87)

It follows that

P

[
D∑

a=1
Xa|Ja| < y

]
= 1 − P

[
D∑

a=1
Xa|Ja| ≥ y

]

≤1 − P

[
D∑

a=1
Xa ≥ d

]
P

[
d∑

a=1
|Ja| ≥ y

]

= 1 −

(
1 − P

[
D∑

a=1
Xa < d

])(
1 − P

[
d∑

a=1
|Ja| < y

])

≤P

[
D∑

a=1
Xa < d

]
+ P

[
d∑

a=1
|Ja| < y

]
. (88)

This ends the proof of Eq. (85). In the same vein, one derives Eq. (86). Namely, we first have (cf. Eq. (87)):

P

[
D∑

a=1
Xa|Ja| ≤ y

]
≥

d∑
d′=1

P

[
D∑

a=1
Xa = d′

]
P

 d′∑
a=1

|Ja| ≤ y


≥ P

[
D∑

a=1
Xa ≤ d

]
P

[
d∑

a=1
|Ja| ≤ y

]
. (89)

Similarly to Eq. (88), one obtains Eq. (86) from Eq. (89):

P

[
D∑

a=1
Xa|Ja| > y

]
= 1 − P

[
D∑

a=1
Xa|Ja| ≥ y

]

≤ 1 −

(
1 − P

[
D∑

a=1
Xa > d

])(
1 − P

[
d∑

a=1
|Ja| > y

])

≤ P

[
D∑

a=1
Xa > d

]
+ P

[
d∑

a=1
|Ja| > y

]
. (90)

We proceed with the proof of Lemmas 23 and 24, which were used in Section 7 to prove Theorem 8.

Lemma (Repetition of Lemma 23). Let interactions I and interaction strengths {JI} be those of the
SSYK- 4 model with average degree k. With probability at least 1 − 2e− kn

32 we have∑
I∈I

|JI | ≥ kn/8. (91)
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Proof. The random variable
∑

I∈I |JI | is a function of two sets of random variables. The first set is XI ∈ {0, 1}
for all possible 4-Majorana interactions I ⊂ [2n], |I| = 4, indicating the presence of I in I. Denoting

D ≡
(

2n − 1
3

)
, (92)

XI is drawn from a Bernoulli distribution with probability p = kD−1, i.e. XI ∼ Bern
(
kD−1). The second set

is JI for all I ∈ I, distributed normally JI ∼ N(0, 1). We introduce auxiliary variables Ja for a ∈ [⌈kn/4⌉] and
Ja ∼ N(0, 1). Then by Lemma 30:

P

[∑
I∈I

|JI | < kn/8
]

≤ P

 ∑
I⊂[2n], |I|=4

XI < ⌈kn

4 ⌉

+ P

 ∑
a∈[⌈kn/4⌉]

|Ja| < kn/8

 . (93)

We can bound the first term using the Chernoff bound for sums of Bernoulli random variables. Substituting(2n
4
)

=
(2n−1

3
)

n
2 , we get

P

 ∑
I⊂[2n], |I|=4

XI < ⌈kn

4 ⌉

 = P

 ∑
I⊂[2n], |I|=4

XI <
kn

4

 ≤ exp
(

−kn

4 (1 − log 2)
)

. (94)

On the other hand, standard concentration properties of Gaussian random variables imply, see Lemma 31 at
the end of this Appendix,

P

⌈kn/4⌉∑
a=1

|Ja| <
kn

8

 < e−kn/32. (95)

Since exp
(
− kn

4 (1 − log 2)
)

≤ e−kn/32, the bound in Eq. (93) yields

P

[∑
I∈I

|JI | < kn/8
]

< 2e−kn/32, (96)

as desired.

Lemma (Repetition of Lemma 24). If k′ ≥ e2k + 1, we have with probability at least 1 − 2 exp
[
− e−2k′

k3

64(k′−1) n
]

that ∑
I∈Ī(k′)

|JI | ≤ 4k2
√

k′ − 1
e−k′

n. (97)

Proof. The random variable
∑

I∈Ī(k′) |JI | is a function of random variables XI ∼ Bern
(
kD−1) for I ⊂ [2n], |I| =

4 and JI ∼ N(0, 1) for all I ∈ I. We introduce auxiliary random variables J ′
a ∼ N(0, 1) for a ∈ [K] where

K ≡ ⌊ 4k2
√

k′ − 1
e−k′

n⌋. (98)

By Lemma 30, one can upperbound

P
[ ∑

I∈Ī(k′)

|JI | >
4k2

√
k′ − 1

e−k′
n
]

≤ P
[
|Ī(k′)| >

4k2
√

k′ − 1
e−k′

n
]

+ P
[ ∑

a∈[K]

|J ′
a| >

4k2
√

k′ − 1
e−k′

n
]
. (99)

We now proceed with upper bounding P
[
|Ī(k′)| > 4k2

√
k′−1 e−k′

n
]

and then P
[∑

a∈[K] |J ′
a| > 4k2

√
k′−1 e−k′

n
]
.

To bound P[|Ī(k′)| > 4k2
√

k′−1 e−k′
n], we introduce the Majorana degree function ki = ki({XI}) ∈ [D], which

is a random variable that counts the number of interactions in I involving a given Majorana ci. Since XI ∼
Bern

(
kD−1), ki follows the binomial distribution Bin(D, kD−1) (note however that different ki and kj are not

necessarily independent). Given the construction of h(k′), it is clear that |Ī(k′)| can be bounded by the ‘excess
degree’ summed over all Majoranas. Concretely, using the Majorana degree function ki we define a random
variable

Z ≡ Z({XI}) ≡ 1
2n

2n∑
i=1

(ki − k′) Iki>k′ , (100)
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which has the immediate property

|Ī(k′)| ≤ 2nZ. (101)

Here we used the indicator function Iki>k′ = 1 when ki > k′ and 0 otherwise. Given Eq. (101), P[Z >
2k2

√
k′−1 e−k′ ] ≥ P[|Ī(k′)| > 4k2

√
k′−1 e−k′

n] and thus it suffices to bound the former. We begin by calculating its
mean:

E[Z] = 1
2n

2n∑
i=1

E[(ki − k′)Iki>k′ ] = E[(k1 − k′)Ik1>k′ ], (102)

where we used linearity of E(.) and the permutation symmetry of the SSYK ensemble. Hence we now need to
calculate E[(k1 − k′)Ik1>k′ ] for a single Majorana (w.l.o.g. c1). Since the associated degree k1 ∼ Bin(D, kD−1),
we calculate directly (denoting p = kD−1):

E[(k1 − k′)Ik1>k′ ] ≤ E[k1Ik1>k′ ] =
D∑

k1=k′+1
pk1(1 − p)D−k1

D!
(D − k1)!k1!k1

= Dp

D−1∑
k1=k′

pk1(1 − p)D−1−k1
(D − 1)!

(D − 1 − k1)!k1! . (103)

The following identity holds [31]:

z−1∑
x=y

wx(1 − w)z−1−x (z − 1)!
(z − 1 − x)!x! = βw(y, z − y), (104)

where βw(y, z − y) is the regularized incomplete beta function. For integer y, z > y it is defined as

βw(y, z − y) = (z − 1)!
(y − 1)!(z − y − 1)!

∫ w

t=0
ty−1(1 − t)z−y−1dt.

Using the Stirling bound x! ≥
√

2πxx+1/2e−x, x ∈ N, one bounds βw(y, z − y) as:

βw(y, z − y) <
w(z − 1)√
2π(y − 1)

(
e

w(z − 1)
(y − 1)

)y−1
. (105)

Substituting p = kD−1 and using Eqs. (104), (105) in Eq. (103) for k′ > e2k + 1 we obtain

E[(k1 − k′)Iki>k′ ] < Dp
p(D − 1)√
2π(k′ − 1)

(
e

p(D − 1)
k′ − 1

)k′−1

<

√
e2k4

2π(k′ − 1)e−k′

⇒ E[Z] <

√
e2k4

2π(k′ − 1)e−k′
. (106)

We now aim to apply the Efron-Stein inequality [25] to bound deviations from the mean E(Z). For this, we
introduce an additional set of independent random variables {X ′

I} such that X ′
I ∼ Bern

(
kD−1). This allows

to define auxiliary functions Z ′
I

Z ′
I ≡ Z

∣∣
XI →X′

I

(107)

where for a single interaction I only, the variable XI is replaced by X ′
I . Using the indicator function IZ>Z′

I
, a

further auxiliary function V = V ({XI}) can be defined:

V ≡ E{X′
I

}

 ∑
I⊂[2n], |I|=4

(Z − Z ′
I)2IZ>Z′

I

 , (108)
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where the averaging is performed over the additional random variables {X ′
I} alone. An exponential version of

the Efron-Stein inequality (Theorem 2 of [25]) states for all θ > 0 and λ ∈ (0, θ−1):

logE[ exp(λ(Z − E[Z]))] ≤ λθ

1 − λθ
logE

[
exp

(
λV

θ

)]
. (109)

To employ Eq. (109), we have to bound E
[

exp
(

λV
θ

)]
. First we upper bound V ({XI}) as a function. For all

interactions I we claim, independent of {XI} and {X ′
I}:

(Z − Z ′
I)2IZ>Z′

I
≤ 4

n2 IXI =1. (110)

To show this, we will go through four possible cases: (XI , X ′
I) = (0, 0), (1, 0), (0, 1), or (1, 1). If XI = X ′

I ,
the left hand side of Eq. (110) vanishes, reproducing Eq. (110) for the cases (XI , X ′

I) = (0, 0) and (1, 1). For
(XI , X ′

I) = (0, 1), Z is smaller than Z ′
I , because replacing XI = 0 by X ′

I = 1 cannot decrease the excess degree
for any Majorana (cf. definition of ki and 2nZ =

∑2n
i=1(ki −k′)Iki>k′). Due to the factor IZ>Z′

I
, (Z −Z ′

I)2IZ>Z′
I

in this case is zero, in agreement with Eq. (110). The last case is (XI , X ′
I) = (1, 0). As any interaction I only

involves 4 fermions, the reduction of total excess degree 2n(Z
∣∣
XI =1 −Z

∣∣
XI =0) is at most equal to 4, independent

of the rest of the variables {XI}. Therefore (Z −Z ′
I)2IZ>Z′

I
for (XI , X ′

I) = (1, 0) is at most equal to 4
n2 , proving

Eq. (110). From Eq. (110) it follows that E{X′
I

}[(Z − Z ′
I)2IZ>Z′

I
] ≤ 4

n2 IXI =1, which we can use to bound
V ({XI}). From the definition stated in Eq. (108) we get:

V ({XI}) ≤ 4
n2

∑
I⊂[2n], |I|=4

XI . (111)

Since XI ∼ Bin(1, kD−1), we have

E
[

exp
(

λV

θ

)]
≤ E

 exp

 4λ

θn2

∑
I⊂[2n], |I|=4

XI


=
(
E
[

exp
(

4λ

θn2 X1

)])(2n
4 )

=
(

(1 − kD−1) + kD−1 exp
(

4λ

θn2

))(2n
4 )

≤ exp
(

k

(
2n

4

)
D−1

(
exp

(
4λ

θn2

)
− 1
))

= exp
(

kn

2

(
exp

(
4λ

θn2

)
− 1
))

. (112)

We further assume a constraint λ < n2θ
4 , which implies the inequality exp( 4λ

θn2 ) − 1 < 8λ
θn2 . This allows to

further bound E
[

exp
(

λV
θ

)]
:

E
[

exp
(

λV

θ

)]
≤ exp

[
4λk

θn

]
. (113)

We now assume an additional constraint λ < 1
2θ , which strengthens the condition λ < θ−1 of Eq. (109). With

this constraint, using Eq. (113) in Eq. (109), we obtain:

logE[ exp(λ(Z − E[Z]))] ≤ 4λ2

1 − λθ

k

n

≤ 8λ2k

n
. (114)

This inequality is true regardless of θ and λ, insofar both numbers are positive and satisfy the constraints we
introduced:

4λ

n2 < θ <
1

2λ
. (115)

For a valid θ to exist, it’s necessary and sufficient that λ belongs to the interval (0, n
2

√
2 ). For such λ, Eq. (114)

holds, and combined with a Markov inequality it implies for any t > 0:

P[Z > E[Z] + t] < exp
[

8λ2k

n
− λt

]
. (116)
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We next choose the value of λ ∈ (0, n
2

√
2 ) that optimizes the right hand side. If t

2
√

2k
< 1, this is achieved with

λ = tn
16k . This yields the result

P[Z > E[Z] + t] < exp
[
− nt2

32k

]
. (117)

We choose t =
√

k4

2(k′−1) e−k′ , which automatically ensures the desired condition t
2

√
2k

< 1 because of the
constraint k′ > e2k + 1 that we assumed in the Lemma statement. We obtain:

P

[
Z > E[Z] +

√
k4

2(k′ − 1)e−k′

]
< exp

[
− e−2k′

k3

64(k′ − 1)n

]
. (118)

Since E[Z] <
√

e2k4

2π(k′−1) e−k′ (Eq. (106)) and
√

e2

2π +
√

1
2 < 2, we arrive at an upper bound for the probability

P
[
|Ī(k′)| > 4k2

√
k′−1 e−k′

n
]
:

P
[
Z >

2k2
√

k′ − 1
e−k′

]
< exp

[
− e−2k′

k3

64(k′ − 1)n

]

⇒ P
[
|Ī(k′)| >

4k2
√

k′ − 1
e−k′

n

]
< exp

[
− e−2k′

k3

64(k′ − 1)n

]
. (119)

To bound P
[∑

a∈[K] |J ′
a| > 4k2

√
k′−1 e−k′

n
]
, we use the concentration properties of Gaussian random variables

(see Lemma 31 at the end of this Appendix). Using K = ⌊ 4k2
√

k′−1 e−k′
n⌋ in Lemma 31.1:

P

 ∑
a∈[K]

|J ′
a| >

4k2
√

k′ − 1
e−k′

n

 ≤ P

 ∑
a∈[K]

|J ′
a| > K

 < e−K/20. (120)

Note that our bound for P
[
|Ī(k′)| > 4k2

√
k′−1 e−k′

n
]

in Eq. (119) is always greater than our bound for

P
[∑

a∈[K] |J ′
a| > 4k2

√
k′−1 e−k′

n
]

in Eq. (120). This allows us to conclude the proof of the Lemma, as Eqs. (99)
and (119) imply:

P

 ∑
I∈Ī(k′)

|JI | >
4k2

√
k′ − 1

e−k′
n

 ≤ 2 exp
[

− e−2k′
k3

64(k′ − 1)n

]
. (121)

Lemma 31. Let Ja ∼ N(0, 1) for a ∈ [A], A ∈ N. Then

1. P
[∑A

a=1 |Ja| ≥ A
]

≤ e−A/20.

2. P
[∑A

a=1 |Ja| ≤ A
2

]
≤ e−A/8.

Proof. For J ∼ N(0, 1), we have

E [ exp (λ|J |)] = e
λ2
2

(
1 + Erf

(
λ√
2

))
. (122)

The Chernoff bound then implies:

P

[
A∑

a=1
|Ja| ≥ A

]
≤
(

e
λ2
2 −λ

(
1 + Erf

(
λ√
2

)))A

,

P

[
A∑

a=1
|Ja| ≤ A/2

]
≤
(

e
λ2
2 + λ

2

(
1 − Erf

(
λ√
2

)))A

. (123)

Evaluating the two expressions at λ = 1
2 and λ = 1 respectively and using basic inequalities for the resulting

constants, we obtain the two bounds claimed in the Lemma.
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Figure 4: Illustration of examples of index sets (S, j), (S′, k) and (S′′, l) (corresponding to non-zero values of f
in Eq. (125)) associated with the different classes of contributions to A(1) in Eq. (124). The D0 contribution
in (a) is the diagonal-free contribution (i.e., (S, j), (S′, k) and (S′′, l) are unequal). The D1, D2, D3 and D4
contributions in resp. (b), (c), (d) and (e) are the diagonal contributions (i.e., at least two of (S, j), (S′, k) and
(S′′, l) are equal).

F Moment bound for dense SYK-q
In this Appendix, we establish the moment bound E

(
A(1)2n

)
≤
(
C

√
n
)2n

, where A(1) is defined as (in Eq.
(70)):

A(1) = C
1√
n

(
n

q − 1

)−3/2 n∑
j,k,l=1

∑
S,S′,S′′

JS,jJS′,kJS′′,l f(S, S′, S′′, j, k, l). (124)

The function f in this expression is defined as (in Eq. (67)):

f(S, S′, S′′, j, k, l) =



1, if (|S′′ ∩ S| is odd)
∧ (|S′ ∩ (S′′△S)| + δk,l is odd)

∧ (|S| = |S′| = |S′′| = q − 1),

0, otherwise.

(125)

We classify the terms in the sum in Eq. (124) into five classes whose total contributions to the sum are
denoted by D0, D1, D2, D3 and D4. D0 comprises of all terms for which the three J ’s are distinct. We shall
therefore call the call the D0 contribution the diagonal-free contribution. D1 comprises of all terms for which
the three J ’s are equal. D2, D3 and D4 comprise of all terms for which exactly two out of three J ’s are equal.

Taking f into account, and thereby the terms that actually appear in A(1), we conclude that the terms
appearing in each class D0, D1, D2, D3 and D4 correspond to the index sets given in Table 1. An illustration
of examples of the index sets (S, j), (S′, k) and (S′′, l) associated with these different classes of contributions to
A(1) is given in Figure 4.

class associated index sets of terms associated index sets of terms in A(1)

D0 (S, j) ̸= (S′, k) ̸= (S′′, l) ̸= (S, j) (S, j) ̸= (S′, k) ̸= (S′′, l) ̸= (S, j)
D1 (S, j) = (S′, k) = (S′′, l) (S, j) = (S′, k) = (S′′, l)
D2 (S, j) = (S′′, l) ̸= (S′, k) S = S′′ ̸= S′, j = l = k

D3 (S, j) = (S′, k) ̸= (S′′, l) S = S′ ̸= S′′, j = l = k

D4 (S′, k) = (S′′, l) ̸= (S, j) (S′, k) = (S′′, l) ̸= (S, j)

Table 1: The index sets associated with each class of terms, and the index sets associated with each class of
terms that appear in the expression for A(1) (i.e., taking f into account).

To upper bound the (2n)th moment of A(1)min, we upper bound the rth moments (for even r ≤ 16 · 2n) of
D0, D1, D2, D3, D4 separately. In particular, if E

(
(Di)r

)
≤
(
C

√
n
)r

for i = 0, 1, ..., 4 and all even r ≤ 16 · 2n,

then E
(
A(1)2n

)
≤
(
C

√
n
)2n

. Note that through the multinomial expansion and successive application of
Cauchy-Schwarz inequality these former bounds indeed give an upper bound on the (2n)th moment of A(1):
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E
(
A(1)2n

)
= E

(
(D0 + D1 + D2 + D3 + D4)2n

)
=

∑
k0+...+k4=2n

2n!
k0!...k4!E

(
Dk0

0 Dk1
1 ...Dk4

4

)
≤

∑
k0+...+k4=2n

C2n E
(
D2k0

0
)1/2E

(
D4k1

1
)1/4E

(
D8k2

2
)1/8E

(
D16k3

3
)1/16E

(
D16k4

4
)1/16

≤
∑

k0+...+k4=2n

C2n
(
C

√
n
)k0+...+k4 ≤

(
C

√
n
)2n

, (126)

where we have used that the multinomial coefficient can be upper bounded by C2n and that the number of
5-tuples of non-negative integers whose sum equals 2n is upper bounded by Cn4 (which is smaller than C2n for
some constant C). Although clearly the rth moments of e.g. D0 have to only be bounded for even r ≤ 2 · 2n,
we bound – for the sake of clarity – the rth moments for even r ≤ 16 · 2n for all Di’s. We first deal with the
case of D0, since the fact that this contribution is diagonal-free allows one to employ a decoupling technique.
Afterwards, we will consider the D1, D2, D3 and D4 contributions.

First, we state the following lemma, which will be useful throughout this appendix.

Lemma 32. Let P and P ′ be two polynomials of centered Gaussian random variables (i.e., the monomials are
formed by products of elements from a sequence of independent centered Gaussian random variables, and each
variable is allowed to appear in a monomial multiple times) with non-negative coefficients. Then, for any even
r, E

(
|P + P ′|r

)
≥ E

(
|P |r

)
.

Proof. We have E
(
|P + P ′|r

)
= E

(
|P |r

)
+
∑r

k=1
(

r
k

)
E
(
P r−k(P ′)k

)
, and E

(
P r−k(P ′)k

)
is non-negative (for

any integers r, k) since P and P ′ have non-negative coefficients and all moments of centered Gaussian random
variables are non-negative.

F.1 Upper bound for moments of D0 (diagonal-free contribution)
We start by noting that the function f takes on values 0 or 1, dependent on the index sets S, S′, S′′, j, k, l
labeling the Majorana operators. We consider replacing f in each term of D0 (Eq. (124)) with δa,bδc,d, where
either

a ∈ (S′ ∪ k), b ̸= c ∈ (S′′ ∪ l), d ∈ (S ∪ j), (option 1)

or

a ∈ (S′ ∪ k), b ̸= c ∈ (S ∪ j), d ∈ (S′′ ∪ l). (option 2)

We denote this modified sum as D0,δδ. By inspection, the index sets for which f is non-zero all correspond to
a non-zero contribution for δa,bδc,d. Note that those index sets for which δa,bδc,d is non-zero also include index
sets for which f is zero. Hence, the terms associated with non-zero δa,bδc,d (for the two options listed above)
are a superset of the terms that correspond to non-zero values of f . Therefore, by Lemma 32, the upper bounds
on even moments of D0 can be obtained by upper bounding the even moments of D0,δδ.

We will denote the part of the sum D0,δδ corresponding to option 1 as D0,min:

D0,min := C
1√
n

(
n

q − 1

)−3/2∑
j,k,l,

S,S′,S′′,

s.t. |(S′∪k)∩(S′′∪l)|≥1
and |(S′′∪l)∩(S∪j)|≥1

JS,jJS′,kJS′′,l, (127)

where the sum is over indices such that (S, j) ̸= (S′, k) ̸= (S′′, l) ̸= (S, j) (by definition of D0) and such that
(S′ ∪ k) ∩ (S′′ ∪ l) and (S′′ ∪ l) ∩ (S ∪ j) differ by at least one element. Any bound for all even moments
of D0,min also holds for D0,δδ − D0,min which corresponds to option 2, due to the symmetry (S, j) ↔ (S′′, l)
between the two options. An upper bound on all even moments of D0,δδ (and, by implication, D0) then follows
from binomial expansion and application of the Cauchy-Schwarz inequality, similarly to Eq. (126). Thus it only
remains to prove E

(
|D0,min|r

)
< (C

√
n)r for all even r.

To upper bound the even moments of D0,min, we are going to employ a decoupling technique. To that end, we
will study the even moments of a related decoupled quantity. This decoupled quantity is defined as D0,min but
with the standard Gaussian random variables JS,j , JS′,k and JS′′,l (selected from a single sequence of standard
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Gaussian random variables) being replaced by their decoupled versions J
(1)
S,j , J

(2)
S′,k and J

(3)
S′′,l (selected from three

independent sequences of standard Gaussian random variables). The related decoupled quantity is given by
(where the sum is again over indices (S, j) ̸= (S′, k) ̸= (S′′, l) ̸= (S, j) and again such that (S′ ∪ k) ∩ (S′′ ∪ l)
and (S′′ ∪ l) ∩ (S ∪ j) differ by at least one element):

C
1

n3q/2−1

∑
j,k,l,

S,S′,S′′,

s.t. |(S′∪k)∩(S′′∪l)|≥1
and |(S′′∪l)∩(S∪j)|≥1

J
(1)
S,jJ

(2)
S′,kJ

(3)
S′′,l, (128)

where we have additionally used that (k/l)l ≤
(

k
l

)
≤ (e k/l)l.

To upper bound the even moments of this decoupled quantity, we will make use of Lemma 33 below from
[32]. The even moments of this decoupled sum are upper bounded by upper bounding the even moments of
a decoupled sum whose terms are a superset of the terms in the sum in Eq. 128. Through Lemma 32, the
even moments of the latter sum are larger than those of the former sum. For each J

(i)
S,j , we introduce q! − 1

additional independent standard Gaussian random variables associated with the q! permutations of the indices
in the subsets of size q. Furthermore, we introduce additional independent standard Gaussian random variables
for which some or all of the q indices that label them are equal. We consider a sum over lists of 3q indices
(which label the independent standard Gaussian random variables) i

(1)
1 , . . . , i

(1)
q , i

(2)
1 , . . . , i

(2)
q and i

(3)
1 , . . . , i

(3)
q

(with each index in [2n]), instead of the sum over subsets of [2n] in Eq. (128). Note that the sum over lists, by
definition, can contain terms for which two (or three) of the Gaussian random variables have equal index sets.

The index lists i
(1)
1 , . . . , i

(1)
q and i

(2)
1 , . . . , i

(2)
q that are summed over each have any one index (denoted by resp.

x and y) that is equal to an index in i
(3)
1 , . . . , i

(3)
q . If we additionally sum over all ‘positions’ of the x and y

indices (where p1, p2, p3 and p4 ∈ {1, . . . , q} label these positions), we obtain the sum (see Eq. (129) below)
whose terms are a superset of those in the sum in Eq. (128). Note that this sum in Eq. (129) contains all the
contributions from a sum over lists of indices, and contains some terms multiple times that would occur only
once in a sum over lists of indices: For example, in the hypothetical case q = 2, one could have a contribution
J

(1)
3,3 J

(2)
6,7 J

(3)
3,7 that would appear once in the sum over lists of indices but appears twice in the sum in Eq. (129)

(once for p1 = 1 and once for p1 = 2). Through Lemma 32, the even moments of the sum in Eq. (129) will
therefore be larger than those of the sum over lists of indices (and therefore larger than those of the sum in Eq.
(128)), and it will thus suffice to upper bound the even moments of the sum in Eq. (129).

Ddecoupled
0,min := C

1
n3q/2−1

q∑
p1,...,p4=1
s.t. p3 ̸=p4

[

×
2n∑

i
(1)
1 ,..,i

(1)
p1−1,x,

i
(1)
p1+1,..,i(1)

q =1

2n∑
i

(2)
1 ,..,i

(2)
p2−1,y,

i
(2)
p2+1,..,i(2)

q =1

2n∑
i

(3)
1 ,..,i

(3)
p3−1,x,i

(3)
p3+1,..,

i
(3)
p4−1,y,i

(3)
p4+1,..,i(3)

q =1

(
J

(1)
i

(1)
1 ,..,i

(1)
p1−1,x,

i
(1)
p1+1,..,i(1)

q

J
(2)
i

(2)
1 ,..,i

(2)
p2−1,y,

i
(2)
p2+1,..,i(2)

q

J
(3)
i

(3)
1 ,..,i

(3)
p3−1,x,i

(3)
p3+1,..,

i
(3)
p4−1,y,i

(3)
p4+1,...,i(3)

q

)]
. (129)

The free indices (q−1 indices of i
(1)
1 , . . . , i

(1)
q and i

(2)
1 , . . . , i

(2)
q , and q−2 indices of i

(3)
1 , . . . , i

(3)
q ) can be summed

over to obtain new independent standard Gaussian random variables denoted by K
(1)
x,p1 , K

(2)
y,p2 and K

(3)
x,p3;y,p4 :

K(1)
x,p1

:= 1/
√

(2n)q−1
2n∑

i
(1)
1 ,..,i

(1)
p1−1,i

(1)
p1+1,..,i

(1)
q =1

J
(1)
i

(1)
1 ,..,i

(1)
p1−1,x,i

(1)
p1+1,..,i

(1)
q

, (130a)

K(2)
y,p2

:= 1/
√

(2n)q−1
2n∑

i
(2)
1 ,..,i

(2)
p2−1,i

(2)
p2+1,..,i

(2)
q =1

J
(2)
i

(2)
1 ,..,i

(2)
p2−1,y,i

(2)
p2+1,..,i

(2)
q

, (130b)

K(3)
x,p3;y,p4

:= 1/
√

(2n)q−2
2n∑

i
(3)
1 ,..,i

(3)
p3−1,i

(3)
p3+1,..,

i
(3)
p4−1,i

(3)
p4+1,..,i(3)

q =1

J
(3)
i

(3)
1 ,..,i

(3)
p3−1,x,i

(3)
p3+1,..,i

(3)
p4−1,y,i

(3)
p4+1,...,i

(3)
q

, (130c)

where we have used that the normalized sum 1/
√

m
∑m

i=1 Ji of a sequence of standard Gaussian random variables
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J1, . . . , Jm is again a standard Gaussian random variable. We now obtain the following expression for Ddecoupled
0,min :

Ddecoupled
0,min := C

q∑
p1,...,p4=1
s.t. p3 ̸=p4

[
1
n

2n∑
x,y=1

K(1)
x,p1

K(2)
y,p2

K(3)
x,p3;y,p4

]
. (131)

The sum over all free indices gives an extra total factor of n3q/2−2, which partially cancels against n3q/2−1 in
Eq. (129). Importantly, we note that now the random variables K

(1)
x,p1 and K

(1)
x′,p1

are independent for x ̸= x′

(and equivalently for K
(2)
y,p2 and K

(3)
x,p3;y,p4). We will apply Lemma 33 from [32] separately to each contribution

to Ddecoupled
0,min in Eq. (131) (with a contribution corresponding to one combination of pi’s).

Lemma 33 (Theorem 1 in [32]). Let Y ∈ RN×...×N be a d-dimensional matrix and define:

F
(

{K
(j)
1 , . . . , K

(j)
N }d

j=1

)
:=

N∑
i1,...,id=1

Yi1,...,id

d∏
j=1

K
(j)
ij

, (132)

where {K
(j)
1 , . . . , K

(j)
N }d

j=1 are d independent sequences of N standard Gaussian random variables. Then for
any integer k ≥ 2:

E
(∣∣F ({K

(j)
1 , . . . , K

(j)
N }d

j=1
)∣∣k) ≤

(
C
∑

P
k|P|/2∥Y ∥P

)k

≤
(
C max

P

[
k|P|/2∥Y ∥P

])k
,

where P are partitions of [d] into non-empty parts (P1, . . . , Ps). The second inequality holds because the number
of partitions of [d] into non-empty parts is constant in n (since d is constant in n). The quantity ∥Y ∥P is
defined as:

∥Y ∥P = ∥Y ∥(P1,...,Ps) := max
{

N∑
i1,...,id=1

Yi1,...,id
x

(1)
iP1

. . . x
(s)
iPs

:
∑
iP1

(
x

(1)
iP1

)2 ≤ 1, . . . ,
∑
iPk

(
x

(k)
iPk

)2 ≤ 1
}

, (133)

with each x ∈ R.
Remark. If F in Eq. (132) is diagonal-free (i.e., Yi1,...,id

= 0 if ij = ik for any j ̸= k) then the moments of
the ‘decoupled’ F in Eq. (132) are (up to constants only depending on d) an upper bound for the moments of
its ‘coupled’ counterpart F ′(K1, . . . , KN

)
:=
∑N

i1,...,id=1 Yi1,...,id

∏d
j=1 Kij (i.e., where the random variables are

all taken from the same sequence of N standard Gaussian random variables):

E
(
(F ′)r

)
≤ CE

(
(F )r

)
.

See e.g. Theorem 2.1 in [33].
The fact that this decoupling inequality only holds for diagonal-free polynomials is exactly the reason for

differentiating between the diagonal-free contribution D0 and the diagonal contributions D1, D2, D3, D4 to
A(1).

For
∑2n

x,y=1 K
(1)
x,p1K

(2)
y,p2K

(3)
x,p3;y,p4 in Eq. (131), we see that d = 3 and hence the possible partitions P are

{1, 2, 3}, {1}{2, 3}, {2}{1, 3}, {1, 2}{3}, {1}{2}{3}. The associated ∥Y ∥P values can be (straightforwardly)
calculated and are given in Table 2. Using Table 2 and Lemma 33, we find the following upper bound on

E
([

C/n
∑2n

x,y=1 K
(1)
x,p1K

(2)
y,p2K

(3)
x,p3;y,p4

]r)
(for all even r):(

C/n max
(√

rn, r
√

n, r
√

n, r, r3/2))r

≤
(
C

√
n
)r

. (134)

Note that Ddecoupled
0,min in Eq. 131 consists of q4 (with q = O(1)) contributions, each corresponding to a given

combination of pi’s. We can again use the multinomial expansion and successive application of the Cauchy-
Schwarz inequality (together with the fact that the multinomial coefficients can be upper bounded by Cr and
that the number of q4-tuples of non-negative integers whose sum equals r is upper bounded by Cr for some
constant C) to conclude that the upper bounds of (C

√
n)r for rth moments (for all even r) of these contributions

imply an upper bound of (C
√

n)r for rth moments (for all even r) of Ddecoupled
0,min .

We now employ the decoupling inequality from the above remark to obtain

E
(
|D0,min|r

)
≤CE

(∣∣Ddecoupled
0,min

∣∣r)≤
(
C

√
n
)r

.

From the arguments given previously, this implies the desired bound E
(
|D0|r

)
≤
(
C

√
n
)r

for all even r, in
particular for r ≤ 16 · 2n.
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P |P| ∥Y ∥P

{1, 2, 3} 1 2n

{1}{2, 3} 2
√

2n

{2}{1, 3} 2
√

2n

{1, 2}{3} 2 1
{1}{2}{3} 3 1

Table 2: The different partitions P of [3] into non-empty parts, with the associated number of parts |P|, and
the associated ∥Y ∥P for

∑2n
x,y=1 K

(1)
x,p1K

(2)
y,p2K

(3)
x,p3;y,p4 in Eq. (131). ∥Y ∥P for the first four partitions can be

straightforwardly evaluated by applying Eq. (133) to Eq. (128), and the fifth ∥Y ∥P can be evaluated by
additional application of the Cauchy-Schwarz inequality.

F.2 Upper bound for moments of D1, D2, D3 and D4

In the previous section we used a decoupling inequality to upper bound the rth moments (for even r ≤ 16 · 2n)
of D0. These decoupling inequalities hold for (Gaussian) polynomials for which each Gaussian monomial is a
product of distinct Gaussian random variables, i.e., diagonal-free polynomials. This holds indeed – by definition
– for the D0 contribution to A(1), but not for contributions D1, D2, D3 and D4. For that reason, we cannot
make use of the same decoupling inequality for the D1, D2, D3 and D4 contributions. Therefore, we have to
resort to other methods to bound their rth moments (for even r ≤ 16 · 2n).

• The D1 contribution can be written as:

D1 := C
1√
n

(
n

q − 1

)−3/2∑
j,S

(
JS,j

)3
. (135)

The rth moment (with r even) of D1 can be upper bounded as follows:

E
(

|D1|r
)

≤ Cr

[
1√
n

(
n

q − 1

)−3/2
]r

E
[(∑

S,j

(
JS,j

)3
)r
]

≤ Cr

[
1√
n

(
n

q − 1

)−3/2
]r((

n

q − 1

)
n r3/2

)r

≤ Crn(5/2−q/2)r, (136)

where we have used that E
[(∑m

i=1 Ki

)r]
=

∑
k1+...+km=r

r!
k1!...km!E

((
K1)k1

)
. . .E

(
(Km)km

)
(for

K1, . . . , Km independent random variables), the fact that (S, j) can take on 2n
( 2n

q−1
)

values and the fact

that the pth moment of a standard Gaussian random variable is equal to (p − 1)!! (≤ pp/2). For even r, we

therefore conclude that E
(

|D1|r
)

≤
(
C

√
n
)r

.

• The D2 and D3 contributions are equivalent and can be written as:

D2 = D3 := C
1√
n

(
n

q − 1

)−3/2 ∑
j,S,S′ s.t. S ̸=S′

(
JS,j

)2
JS′,j . (137)

The rth moment (with r even) can be written as follows:

E
(

|D2|r
)

,E
(

|D3|r
)

= Cr

[
1√
n

(
n

q − 1

)−3/2
]r

E
(( ∑

j,S,S′ s.t. S ̸=S′

(
JS,j

)2
JS′,j

)r)
. (138)

We define

g :=
∑

j,S,S′ s.t. S ̸=S′

(
JS,j

)2
JS′,j , (139)

Accepted in Quantum 2023-06-07, click title to verify. Published under CC-BY 4.0. 30



for which E(g) = 0. We note that g is a homogeneous polynomial in standard Gaussian random variables of
degree 3. To upper bound the moments of g, and thereby the moments of D2 and D3, we use the following
result from [34]. This result is an extension of Lemma 33 from [32] to the setting where diagonal terms are
allowed to appear in the polynomial. The extension also includes inhomogeneous polynomials, although in
the current setting we are considering only homogeneous polynomials.

Lemma 34 (Theorem 1.3 in [34]). Let K := K1 . . . , KN denote a sequence of N independent standard
Gaussian random variables and g : RN → R a polynomial of degree D. Then, for all r ≥ 2:

E
([

g(K) − E
(
g(K)

)]r
)

≤ Cr

[ ∑
1≤d≤3

∑
P([d])

r|P|/2∥∥E(Ddg(K)
)∥∥

P

]r

, (140)

where P are partitions of [d] into non-empty parts, and ∥Y ∥P (with Y a d-way tensor) is defined in Eq.
(133). Ddg(K) denotes the dth derivative of g(K), which corresponds to a d-way tensor with entries equal
to
[
Ddg(K)

]
i1,...,id

= ∂
∂Ki1

. . . ∂
∂Kid

g(K). For d = D, Ddg(K) is constant.

For g in Eq. (139), we have that N = n
(

n
q−1
)
, since the sequence of Gaussian random variables corresponds

to {JS,j}. To find an upper bound for the rth moment of g using Eq. (140), we first calculate Ddg
for d = 1, 2, 3. Then, for each d, we upper bound

∥∥E(Ddg
)∥∥

P for all partitions P of [d]. We will show

that for all d and associated partitions P([d]),
∥∥E(Ddg

)∥∥
P can be upper bounded in such a way that

E
(

|D2|r
)

,E
(

|D3|r
)

≤
(
C

√
n
)r

for all even 2 ≤ r ≤ 16 · 2n. Finally, the 0th moment also (trivially)

satisfies this upper bound, hence it holds for all even r ≤ 16 · 2n.

The derivatives of g are equal to:

D g =
( ∑

S′ : S′ ̸=S

J2
S′,j + 2JS,j

∑
S′ : S′ ̸=S

JS′,j

)
(S,j) =⇒ E

(
D g
)

=
(

n

q − 1

)
(S,j)

, (141)

D2 g =

2
∑

S′ : S′ ̸=S JS′,j , if (S, j) = (T, k)
2(JT,j + JS,j), if S ̸= T and j = k

0, if j ̸= k


(S,j),(T,k)

=⇒ E
(
D2g

)
= (0)(S,j),(T,k), (142)

D3 g =

2, if (S = T ̸= U or S ̸= T = U or S = U ̸= T ) and j = k = l

0, if (S = T = U or S ̸= T ̸= U) and j = k = l

0, if j, k, l are not all equal


(S,j),(T,k),(U,l)

=⇒ E
(
D3 g

)
= D3 g.

(143)
In Table 3, we give the values of

∥∥E(Ddg
)∥∥

P for all partitions P([d]) for d = 1, 2, 3.
∥∥E(Ddg

)∥∥
P for

d = 1 can be straightforwardly evaluated using Eq. (133) and for d = 2 can be trivially evaluated by
using E

(
D2g

)
= 0. For d = 3,

∥∥E(Ddg
)∥∥

P can be upper bounded using Eq. (133), and the triangle
and Cauchy-Schwarz inequalities (for illustration purposes, we provide an example of the derivation of this
upper bound for P = {1, 2}{3} below).

P |P|
∥∥E(Ddg

)∥∥
P

{1} 1
(

n
q−1
)3/2

{1, 2} 1 0
{1}{2} 2 0
{1, 2, 3} 1 C

√
n
(

n
q−1
)

{1}{2, 3} 2 Cn
(

n
q−1
)

{2}{1, 3} 2 Cn
(

n
q−1
)

{1, 2}{3} 2 Cn
(

n
q−1
)

{1}{2}{3} 3 C
(

n
q−1
)

Table 3: The different partitions P of [3] into non-empty parts, with the associated number of parts
|P|, and (the upper bounds for) the associated

∥∥E(Ddg
)∥∥

P for g in Eq. (139).
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Combining the upper bounds for
∥∥E(Ddg

)∥∥
P in Table 3 with the factor of r|P|/2(≤ Cn|P|/2) in Eq. (140)

and the normalization factor in Eq. (138), we find – using E(g) = 0 – that indeed E
(

|D2|r
)

,E
(

|D3|r
)

≤(
C

√
n
)r

for all even r ≤ 16 · 2n.

Example: For illustration purposes, we give an explicit evaluation of
∥∥E(Ddg

)∥∥
P for P = {1, 2}{3} (the

evaluations for other P’s follow using similar methods). By definition (Eq. (133)), we have:

∥∥E(D3g
)∥∥

{1,2}{3} = sup
{ ∑

(S,j),(T,k),(U,l)

E
(
D3g

)
(S,j),(T,k),(U,l)x(S,j),(T,k)y(U,l)

:
∑

(S,j),(T,k)

x2
(S,j),(T,k) ≤ 1,

∑
(U,l)

y2
(U,l) ≤ 1

}
. (144)

Using the expression obtained for E
(
D3g

)
(S,j),(T,k),(U,l), we obtain:

∥∥E(D3g
)∥∥

{1,2}{3} = sup
{∑

j,S,T

2 x(S,j),(T,j)y(T,j) +
∑

j,S,T

2 x(S,j),(T,j)y(S,j) +
∑

j,S,U

2 x(S,j),(S,j)y(U,j)

:
∑

(S,j),(T,k)

x2
(S,j),(T,k) ≤ 1,

∑
(U,l)

y2
(U,l) ≤ 1

}
≤ sup

{
2
∑

S

∣∣∣∑
j,T

x(S,j),(T,j)y(T,j)

∣∣∣+ 2
∑

T

∣∣∣∑
j,S

x(S,j),(T,j)y(S,j)

∣∣∣
+ 2

∑
j

∣∣∣∑
S

x(S,j),(S,j)

∣∣∣ ∣∣∣∑
U

y(U,j)

∣∣∣ :
∑

(S,j),(T,k)

x2
(S,j),(T,k) ≤ 1,

∑
(U,l)

y2
(U,l) ≤ 1

}
≤ sup

{
2
∑

S

∥x∥ ∥y∥ + 2
∑

T

∥x∥ ∥y∥

+ 2
∑

j

∥x∥

√(
n

q − 1

)
∥y∥

√(
n

q − 1

)
:

∑
(S,j),(T,k)

x2
(S,j),(T,k) ≤ 1,

∑
(U,l)

y2
(U,l) ≤ 1

}
≤ Cn

(
n

q − 1

)
, (145)

where we have used the triangle inequality in the first inequality, and the Cauchy-Schwarz inequality for
the second inequality (and we note that e.g.

∑
U y(U,j) is simply equal to the inner product of y(j) :=

(y(U1,j), y(U2,j), . . .) with the all-ones vector).

• The D4 contribution can be written as:

D4 := C
1√
n

(
n

q − 1

)−3/2 ∑
j,k,S,S′

s.t. 0<|S∩S′|<q−1
is odd

JS,j

(
JS′,k

)2
. (146)

We note that the main difference with the D2 and D3 contributions is that, for D4, the sum is over the
double index j, k (instead of over the single index j), and over a restricted sum over sets S, S′ (instead of
over a free sum over sets S, S′). To bound the moments of D4, we will employ a similar method as for D2
and D3. The rth moment (with r even) can be upper bounded as follows (where we drop the ‘|S ∩ S′| is
odd’ constraint using Lemma 32 and denote the collection of subsets S′ such that 0 < |S ∩ S′| < q − 1 by
σ(S)):

E
(

|D4|r
)

≤ Cr

[
1√
n

(
n

q − 1

)−3/2
]r

E
(( ∑

j,k,S,
S′∈σ(S)

JS,j

(
JS′,k

)2
)r)

. (147)

We note that |σ(S)| can be upper bounded and lower bounded by Cnq−2 (for some constants C). We define

h :=
∑

j,k,S,
S′∈σ(S)

JS,j

(
JS′,k

)2
, (148)
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for which E(h) = 0. We note that h is a homogeneous polynomial in standard Gaussian random variables
of degree 3. To upper bound the moments of g, and thus the moments of D4, we again use Lemma 32
from [34]. We use Eq. (140) to find an upper bound for the rth moment of h. We first calculate Ddh for
d = 1, 2, 3. Then, for each d, we upper bound

∥∥E(Ddh
)∥∥

P for all partitions P of [d]. Thereby, we show that

for all d and associated partitions P([d]),
∥∥E(Ddh

)∥∥
P can be upper bounded such that E

(
|D4|r

)
≤
(
C

√
n
)r

for all even 2 ≤ r ≤ 16 · 2n. The 0th moment trivially satisfies this bound, and therefore it holds for all
even r ≤ 16 · 2n.

The derivatives of h are equal to:

D h =
( ∑

S′∈σ(S),p

J2
S′,p + 2JS,j

∑
S′∈σ(S),p

JS′,p

)
(S,j) =⇒ E

(
Dh
)

≤
(
Cnq−1)

(S,j), (149)

where the sum over p runs from 0 to n and we have used the bounds on |σ(S)|. Note that this is a pointwise
upper bound on the entries of the vector E

(
Dh
)
, which will be enough to bound the corresponding norm.

D2 h =

 2JT,k + 2JS,j , if T ∈ σ(S) and ∀k

2
∑

S′∈σ(S),p JS′,p, if (T, k) = (S, j)
0, otherwise


(S,j),(T,k)

=⇒ E
(
D2h

)
= (0)(S,j),(T,k), (150)

D3 h =


2, if ((U, l) = (T, k) (U, T ∈ σ(S))) or

((U, l) = (S, j) and T ∈ σ(S) and ∀k) or

((T, k) = (S, j) and U ∈ σ(S) and ∀l)
0, otherwise


(S,j),(T,k),(U,l)

=⇒ E
(
D3h

)
= D3h. (151)

In Table 4, we give the values of
∥∥E(Ddh

)∥∥
P for all partitions P([d]) for d = 1, 2, 3.

∥∥E(Ddh
)∥∥

P for
d = 1 can be straightforwardly evaluated using Eq. (133) and for d = 2 can be trivially evaluated by
using E

(
D2h

)
= 0. For d = 3,

∥∥E(Ddh
)∥∥

P can be upper bounded using Eq. (133), and the triangle and
Cauchy-Schwarz inequalities. To obtain these upper bounds, we have again used the bounds on |σ(S)|.

P |P|
∥∥E(Ddh

)∥∥
P

{1} 1 C
(
nq−1)3/2

{1, 2} 1 0
{1}{2} 2 0
{1, 2, 3} 1 Cnq−1/2

{1}{2, 3} 2 Cnq

{2}{1, 3} 2 Cnq

{1, 2}{3} 2 Cnq

{1}{2}{3} 3 Cnq/2

Table 4: The different partitions P of [3] into non-empty parts, with the associated number of parts
|P|, and (the upper bounds for) the associated

∥∥E(Ddh
)∥∥

P for h in Eq. (148).

Combining the upper bounds for
∥∥E(Ddh

)∥∥
P in Table 4 with the factor of r|P|/2(≤ Cn|P|/2) in Eq. (140)

and the normalization factor in Eq. (147), we find – using E(h) = 0 – that indeed E
(

|D4|r
)

≤
(
C

√
n
)r

for

all even r ≤ 16 · 2n.

In conclusion, we have shown that the rth moments (for even r ≤ 16 · 2n) of D0, D1, D2, D3 and D4 can
be upper bounded by

(
C

√
n
)r

, and hence, by Eq. (126), the (2n)th moment of A(1) can be upper bounded by(
C

√
n
)2n

. Thereby, we have also established that the second condition in Eq. (71) is satisfied.

G Two-colored SYK to standard SYK
In this Appendix, we give the proof of Lemma 27.
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Proof. To establish Lemma 27, we now show that the state ρ that achieves Tr(H(2)ρ) ≥ C
√

n (with H(2)

defined in Eq. (54)), with probability at least 1 − exp
(

− Ω(n)
)

also achieves Tr(Hρ) ≥ C
√

n for the standard
SYK Hamiltonian. To that end, we consider a standard SYK model with 2n Majorana operators and partition
these Majorana operators into a subset of size 2n(q−1)

q and a complementary subset of size 2n
q . The standard

SYK model Hamiltonian H, see Eq. (2), consists of
(2n

q

)
terms. These terms are labeled by all ordered subsets

{j1 < . . . < jq}, and I denotes the collection of these subsets. The terms in H for which q − 1 Majorana
operators are in the first subset, and the other Majorana operator is in the complementary subset, are labelled
by ordered subsets {j1 < . . . < jq : j1 < . . . < jq−1 < q−1

q ≤ jq}. We denote the collection of these subsets by
T . The collection of other subsets is denoted by T ′ = I\T . T and T ′ thus correspond to collections of terms
in the Hamiltonian. We denote the Hamiltonian consisting of the collection T by HT and the Hamiltonian
consisting of terms T ′ by HT ′ , hence H = HT + HT ′ . HT corresponds exactly to the 2-colored Hamiltonian in
Eq. (54) when multiplied by

e−(q−1)/2 ≤

√(2n
q

)
√

2n
q

√( q−1
q 2n

q−1

) ≤ eq/2, (152)

which, importantly, is lower bounded and upper bounded by a constant in n. Note that the sizes of the two
subsets into which the Majorana operators are partitioned can in fact be any c2n and (1 − c)2n for c = O(1)
(instead of just 2n(q−1)

q and 2n
q ). The factor in Eq. (152) is lower bounded and upper bounded by a constant in

n as well for all of these other partitions. Hence n is not constrained to be a multiple of q.
For any state ρ, E

(
Tr(Hρ)

)
= 0, where the expectation value is w.r.t. the couplings in H since the couplings

are random variables with zero mean. The state ρθ defined in Eq. (57) is able to achieve Tr(H(2)ρθ) ≥ C
√

n
(with high probability) since it is constructed using a circuit that itself depends on the random couplings JI

(I ∈ T ) appearing in H(2). Since ρθ does not depend on the couplings JI with I ∈ T ′, we have Tr(HT ′ρθ) = 0.
Since: (i) |Tr(CIρ)| ≤ 1 (for any ρ) for I ∈ T ′, (ii) that each JI is a standard Gaussian random variable, and
(iii) that |T ′| ≤

(2n
q

)
, the quantity

Tr
(
HT ′ρ

)
=
(

2n

q

)−1/2 ∑
I∈T ′

JITr(CIρ) (153)

is a Gaussian random variable with zero mean and variance at most one, for any ρ. Then, E
[

exp(tTr(HT ′ρ))
]

≤
exp( 1

2 t2) for all t ≥ 0. Applying Chernoff’s bound to Tr(HT ′ρ), and choosing t = C
√

n, we obtain:

Pr
[
|Tr(HT ′ρ)| ≥ C

√
n
]

≤ 2 exp
(

− Ω(n)
)
, (154)

for any constant C.
Using Eq. (154) and Tr(Hρ) = Tr(HT ρ) + Tr(HT ′ρ), we conclude that the state ρθ which achieves

Tr(H(2)ρθ) ≥ C
√

n (i.e., for the 2-colored SYK Hamiltonian) with probability at least 1 − exp
(

− Ω(n)
)
,

also achieves Tr(Hρθ) ≥ C
√

n (where H is the standard SYK Hamiltonian in Eq. (2)) with probability at least
1 − exp

(
− Ω(n)

)
. Therefore, λmax(H) ≥ C

√
n with probability at least 1 − exp

(
− Ω(n)

)
.
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