2023-05-08
Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time
Publication
Publication
With recent advances in learning algorithms, recurrent networks of spiking neurons are achieving performance that is competitive with vanilla recurrent neural networks. However, these algorithms are limited to small networks of simple spiking neurons and modest-length temporal sequences, as they impose high memory requirements, have difficulty training complex neuron models and are incompatible with online learning. Here, we show how the recently developed Forward-Propagation Through Time (FPTT) learning combined with novel liquid time-constant spiking neurons resolves these limitations. Applying FPTT to networks of such complex spiking neurons, we demonstrate online learning of exceedingly long sequences while outperforming current online methods and approaching or outperforming offline methods on temporal classification tasks. The efficiency and robustness of FPTT enable us to directly train a deep and performant spiking neural network for joint object localization and recognition, demonstrating the ability to train large-scale dynamic and complex spiking neural network architectures.
Additional Metadata | |
---|---|
, , , | |
doi.org/10.1038/s42256-023-00650-4 | |
Nature Machine Intelligence | |
Human Brain Project | |
Organisation | Machine Learning |
Yin, B, Corradi, F, & Bohte, S.M. (2023). Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time. Nature Machine Intelligence. doi:10.1038/s42256-023-00650-4
|