Accurate online training of dynamical spiking neural
networks through Forward Propagation Through Time

Bojian Yin!", Federico Corradi>?, and Sander M. Bohté'*>

ICWI, Machine Learning group, Amsterdam, The Netherlands

2Eindhoven University of Technology, Electrical Engineering, Eindhoven, The Netherlands
3Stichting IMEC Netherlands, Holst Centre, Eindhoven, The Netherlands

4Univ of Amsterdam, Faculty of Science, Amsterdam, The Netherlands

SRijksuniversiteit Groningen, Faculty of Science and Engineering, Groningen, The Netherlands
“byin@cwi.nl (corresponding author)

ABSTRACT

With recent advances in learning algorithms, recurrent networks of spiking neurons are achieving performance competitive
with vanilla recurrent neural networks. Still, these algorithms are limited to small networks of simple spiking neurons and
modest-length temporal sequences, as they impose high memory requirements, have difficulty training complex neuron models,
and are incompatible with online learning. Here, we show how recently developed ‘Forward-Propagation-Through-Time’ (FPTT)
learning combined with novel Liquid Time-Constant spiking neurons resolves these limitations. Applying FPTT to networks of
such complex spiking neurons, we demonstrate online learning of exceedingly long sequences while outperforming current
online methods and approaching or outperforming offline methods on temporal classification tasks. FPTT’s efficiency and
robustness furthermore enables us to directly train a deep and performant spiking neural network for joint object localization
and recognition, demonstrating the ability to train large-scale dynamic and complex spiking neural network architectures.

Main text

Introduction

The binary, event-driven and sparse nature of communication between spiking neurons in the brain holds great promise
for flexible and energy-efficient Al. Recent work has demonstrated effective and efficient performance from spiking neural
networks (SNNs)!, enabling competitive and energy-efficient applications in neuromorphic hardware” and novel means of
investigating biological neural architectures*. This success stems principally from the use of approximating surrogate
gradients™ to integrate networks of spiking neurons into auto differentiating frameworks like Tensorflow and Pytorch’,
enabling the application of standard learning algorithms and in particular Back-Propagation Through Time (BPTT).

The imprecision of the surrogate gradient approach however expounds on the existing drawbacks of BPTT. In particular,
BPTT has a linearly increasing memory cost as a function of sequence length 7', Q(T') and suffers from vanishing or exploding
backpropagating gradients, which limits its applicability on long time sequences® and large-scale SNN models®. Alternative
approaches like real-time recurrent learning (RTRL)!? similarly exhibit excessive computational complexity, and low complexity
approximations to BPTT like e-prop'! or OSTL!? at best approach BPTT performance. Training on long temporal sequences
in SNNs is of particular importance when the tasks require a high temporal resolution, for instance to match the physical
characteristics of low-latency clock-less neuromorphic hardware® '3,

Kag et al.® recently introduced an algorithm for online learning in recurrent networks, Forward Propagation Through Time
(FPTT), demonstrating better generalization on many temporal classification benchmark tasks compared to BPTT. In particular,
FPTT improved over BPTT on long sequence training in Long Short-Term Memory networks (LSTMs). FPTT differs from
BPTT in that it does not calculate a gradient through time, and instead considers learning-through-time as a coordinated
consensus problem. Using regularized synaptic tags, FPTT enables immediate, online learning in RNNs similar to feedforward
networks, eliminating the problematic dependence of the gradient calculation in BPTT on the products of partial gradients
along the time dimension: FPTT exhibits linear Q(7') computational cost per sample. For training recurrent SNNs however, as
we demonstrate, a straightforward application of FPTT on long sequence training does not improve performance as it does in%,
and we observed this also with vanilla RNNs. Therefore, we deduce that FPTT particularly benefits from the gating structure
inherent in LSTM-style gated RNNs, which is lacking in vanilla RNNs and SRNNs.

Taking inspiration from the concept of Liquid Time-Constant (LTCs)'4, we introduce a class of spiking neurons, the Liquid
Time-Constant Spiking Neuron (LTC-SN), where time-constants internal to the neuron are dynamic and input-driven in a

learned fashion, resulting in functionality similar to the gating operation in LSTMs. We integrate these neurons in networks
that are trained with FPTT and demonstrate that the resulting LTC-SNNs outperform various SNNs trained with BPTT on
long sequences while enabling online learning and drastically reducing memory complexity. We show this for several classical
benchmarks that can easily be varied in sequence length, like the Add-task and the DVS-GESTURE benchmark'> 6. We
also show how FPTT-trained LTC-SNNs can be applied to large convolutional SNNs, where we demonstrate state-of-the-art
for online learning in SNNs on a number of standard benchmarks (S-MNIST, R-MNIST, DVS-GESTURE) and to near
(Fashion-MNIST, DVS-CIFAR10) or exceeding (PS-MNIST, R-MNIST) state-of-the-art performance as obtained with offline
BPTT.

Finally, the training and memory efficiency of FPTT enables us to directly train SNNs in an end-to-end manner at network
sizes and complexity that was previously infeasible. We demonstrate this in a large-scale You-Look-Only-Once (YOLO)
LTC-SNN architecture for object detection on the Pascal Visual Object Classes (Pascal VOC) dataset!”. Object detection
is a challenging task, as it involves accurate multi-object identification and precise bounding box coordinate computation;
previous SNN approaches have been limited to either ANN-to-SNN conversions'29, requiring many thousands of time-steps
at inference time, or small scale and inefficient SNNs with performance far removed from that of modern ANNs 21 QOur
FPTT-trained YOLOv4?? implementation — SPYv4 — uses 21 layers, 6.2M LTC spiking neurons, and 14M parameters to
achieve state-of-the-art for SNNs, exceeding the performance of converted ANNs while achieving extremely low latency.

With FPTT and LTC spiking neurons, we demonstrate end-to-end online training of large and high-performance SNNs
comprised of complex spiking neuron models that were previously infeasible.

Related Work

The problem of training recurrent neural networks has an extensive history>>~>>. To account for past influences on current
activations in a recurrent network, the network can be unrolled, and errors are computed along the paths of the unrolled network.
The direct application of error-backpropagation to this unrolled graph is known as Backpropagation-Through-Time??. BPTT
needs to wait until the last input of a sequence before being able to calculate parameter updates and, as such, cannot be applied
in an online manner. Alternative online learning algorithms for RNNs have been developed, including Real-Time Recurrent
Learning (RTRL)'? and approximations thereof>®. RTRL however is prohibitive in time and memory complexity, and while
approximations improve complexity (see'Z, and Table 1), they yield variable and task-dependent accuracy deficits compared to
exact gradients'!?7.

Spiking neural networks are neural networks composed of spiking neurons: stateful neural units that communicate using
binary values, i.e. spikes. Their state is determined by current and past inputs, and this state then determines the (binary) value
of the emitted output through a spiking mechanism. The discontinuity of the spiking mechanism challenges the application
of error-backpropagation, which can be overcome using continuous approximations> 2%, so-called “surrogate gradients™®.
Recurrent SNNs trained with surrogate gradients and BPTT now achieve competitive performance compared to classical
RNNs! 1629 In these and other studies, more intricate spiking neuron models, like those including adaptation, outperformed
less complex models such as standard Leaky-Integrate-and-Fire neurons'!. Additionally, training internal spiking neuron’s
model parameters like the time-constants of adaptation and membrane-potential decay then further improves performance’>?°.

Still, the application of BPTT in SNNs has several drawbacks: in particular, BPTT accumulates the approximation error of
surrogate gradients along time. Moreover, the spike-triggered reset of some state variables in typical spiking neuron models
(e.g. the membrane potential) causes a vanishing gradient when applying BPTT. We found these effects to be particularly
problematic when training networks with complex and more biologically detailed neuron models like Izhikevich and Hodgkin-
Huxley models (Table ??). Furthermore, because the SNN training accuracy heavily depends on hyperparameters, obtaining
convergence using BPTT in SNNs is non-trivial.

For spiking neural networks, approximations to BPTT like e-prop'! and Online Spatio-Temporal Learning (OSTL)!?
achieve linear time complexity and have proven effective for many small-scale benchmark problems, ATARI GAMES and
also large-scale networks like cortical microcircuits®. In terms of trained accuracy, however, none of these approximations
have been shown to outperform standard BPTT and, applications to deeper networks use approximate spatial credit assignment

approaches like learning-to-learn'!.

FPTT in SNNs

As introduced in®, FPTT can be implemented directly on the computational graph of SNNs, similar to BPTT approaches. This
is illustrated Fig. 1a; the gradient calculation and corresponding algorithms are given in the Methods section and Alg. SAT.
FPTT intuitively provides a more robust and efficient gradient approximation for spiking recurrent neural networks than BPTT,
as FPTT simplifies the complex gradient computation path in SNNs. This potentially lessens surrogate gradients’ cumulative
effect, avoiding or reducing the gradient vanishing or explosion problem.

As we will show, FPTT applied directly to SNNs like the Adaptive Spiking Recurrent Neural Networks (ASRNNs)!

2/14

converges but without the learning improvements reported for RNN architectures® — and we observed this also for vanilla
non-spiking RNNs (not shown). As FPTT was successfully applied to RNNs with gating structures (LSTM), we introduce the
Liquid Time-Constant Spiking Neuron (LTC-SN) as a spiking neuron model with a similar gating structure. We observe that in
spiking neurons, the time-constant of the membrane potential acts similar to the forget-gate in LSTMs; the LSTM forget-gate
however is dynamically controlled by learned functions of inputs. Inspired also by Hasani et al.'%, the LTC-SN’s internal
time-constants are a learned function of the inputs and hidden states of the network (illustrated in Fig. 1b; see also Methods).
Le., for adapting spiking neurons, the time-constant of the membrane potential decay, 7,, and the time-constant of the adaptation
decay, 7,4, can be made dynamic. A spiking neuron with such varying internal dynamics can respond in flexible and unexpected
ways to input currents: as shown in Fig. ¢, depending on the effective weights W, the current-spike-frequency response curve
can be muted-and-saturating, near-linear, or rapidly increasing-and-then-saturating; when subject to a dynamically varying
input current, a higher input current into LTC-SN units can result in a reduced firing rate, and transient dynamics can be absent
or present (Fig. 1d, samples of trained behavior are shown in Fig. 2?).

Experiments

We demonstrate the effectiveness of FPTT training for LTC-SNNs on several well-known temporal classification benchmarks,
including the Add-task as in® and several established SNN benchmarks (the DVS-GESTURE and DVS-CIFAR10 classification
tasks, and the Sequential, Sequential-Permuted, rate-based and Fashion MNIST classification tasks). We moreover demonstrate
how the memory efficiency of FPTT enables training large-scale LTC-SNNs for applications like object localization.

The Add-task’! is used to evaluate the ability of RNN architectures to maintain long range memory. An example data
point consists of two sequences (x;,x;) of length T and a target label y. The sequence x| contains values sampled uniformly
from [0, 1], x5 is a binary sequence containing only two 1s, and the label y is the sum of the two entries in the sequence xi,
where x, = 1. The IBM DVS GESTURE dataset!> consists of 11 kinds of hand and arm movements of 29 individuals under
three different lighting conditions captured using a DVS128 camera. DVS-CIFAR10 is a widely used dataset in neuromorphic
vision, where the event stream is obtained by displaying moving images of the CIFAR-10 dataset®>. The Sequential and
Permuted-Sequential MNIST (S-MNIST, PS-MNIST) datasets were developed to measure sequence recognition and memory
capabilities of learning algorithms: the S-MNIST dataset is obtained by reshaping the classical MNIST 28x28 pixel images
into a set of one-dimensional sequences consisting of 784 time-steps per sample, where pixels are then sequentially entered
one-by-one as input to the network; the PS-MNIST dataset is generated by performing a fixed permutation on the S-MNIST
dataset. Theoretically and in practice, PS-MNIST is a more complex classification task than S-MNIST because it lacks
temporally correlated patterns. The rate-coded MNIST (R-MNIST) is an SNN-specific benchmark where a biologically
inspired encoding method is used to generate the network input that produces streaming events (a spike train), by encoding
the grey values of the image with Poisson rate-coding??. We also applied FPTT-trained LTC-SCNNS to the traditional static
MNIST and Fashion-MNIST datasets for comparison with other models trained offline. Here, we input pixel values directly
as injected current into the spiking input layer of the network, repeated 20 times to mimic a constant input stream. For object
localization, we used the PASCAL VOC benchmark'” which is comprised of standard 416x416 RBG images with 20 different
objects and corresponding bounding box locations.

FPTT-SNN requires Liquid Time-Constant Spiking Neurons. We apply both BPTT and FPTT to the Add-task as originally
studied in® to illustrate the need for more complex spiking neurons like LTC-SNs when applying FPTT learning. We do this for
various network types, including non-spiking LSTMs as a baseline, ASRNNs', and LTC-SNN.

For a long adding sequence of length 1000, example loss-curves are plotted in Fig. 2a and averaged converged losses in
Fig. 2b. We find that as in8, a standard LSTM network trained with BPTT fails to converge to zero loss, while the same network
does converge using FPTT. For SNNs, we find that ASRNNSs trained with either FPTT or BPTT do not fully converge, and
for the LTC-SNNs trained with BPTT learning rapidly diverges due to exploding gradients — BPTT truncated to 1 timestep
(TBPTT-1), corresponding to applying plain BP at every timestep, does not diverge but also does not fully converge. LTC-SNNs
trained with FPTT however successfully minimize the loss: ablating the LTC-SN dynamics, we find that the input-dependent
dynamic gating of the membrane-potential time-constant is critical for convergence (Tab. ??), and the memory provided by the
LTC-SN self-recurrence does in fact suffice for solving this task for shorter sequences, though not for longer ones (Fig. 2?).

FPTT allows for longer sequence training. Next, we study the ability of FPTT-trained LTC-SNNs to learn increasingly long
sequences. For this, we use the DVS-GESTURE dataset and systematically investigate the performance of a fixed architecture
shallow SRNN model on increasingly many frames sampled from the same gesture signals as in'®, ranging from 20 to 1000
frames. For each frame-encoded dataset, we train various networks types for a fixed number of epochs with an identical number
of neural units, and report the best performance for BPTT and FPTT trained networks; networks either converged before the
final epoch or diverged (Fig ??a,b).

The results for different sampling frequencies are shown in Fig. 2¢. Of all methods and networks, the LTC-SNN trained
using FPTT achieves the best accuracy in all cases, also outperforming standard (BPTT-trained) LSTMs. Furthermore, the

3/14

FPTT-trained LTC-SNNs and the ASRNNSs exhibit constant accuracy over the whole range of sequence lengths, where the
LTC-SNNs consistently outperform the ASRNNSs.

In contrast, the accuracy of both LTC-SNNs and ASRNNSs trained with BPTT quickly deteriorates as sequence length
increases. For the LTC-SNNss, the networks failed to converge for frame-lengths 200 and 500, and best validation accuracy is
reported in Fig. 2¢. For the baseline standard LSTM, this effect is also there, albeit more moderate, as performance decreases
from 88.9% at 100 frames to 82.5% at 500 frames. Applying plain BP at every timestep (TBPPT1) does converge for large
frame-lengths but, as expected, achieves poor accuracy. Together, this suggests that indeed the gradient approximation errors in
SNNs add up when training with BPTT. The plot also illustrates the memory-intensiveness of BPTT: when applied to the 1000
frame-length data, GPU-memory (24GB) was insufficient for training LSTM, ASRNN and LTC-SNN.

Comparing sparsity (average firing rate) for the different SNN models, we find no meaningful differences (Fig. ??c¢);
parameter-matched networks showed similar performance as unit-matched networks, and the inclusion of an auxiliary loss®
only aided BPTT-trained LSTMs but not BPTT-trained SRNNs. Making only the membrane-decay time-constant dynamic has
a small negative impact (ASRNN— Table ??).

FPTT Requires Less Memory. FPTT-trained LTC-SNNs require increasingly less memory as sequence length increases
as measured on GPU. For the DVS-GESTURE dataset (Fig. 2d), FPTT memory-use is both less and increases less rapidly
compared to BPTT as a function of the number of frames used per data sample. FPTT’s increasing memory use can be attributed
to the rapidly inflating size of the frame-encoded dataset, increasing in size from 7.4 GB for 20 frames to 368.1 GB for 1000
frames. We validated this by training an LTC-SNN network on the R-MNIST classification problem, where longer sequences
are simulated by showing the same sample for an increasing number of frames. We then find, as expected, that the memory
required for FPTT training remains fixed. At the same time, BPTT memory-use linearly increases (Fig. 2e).

FPTT with LTC Spiking Neurons improves over Online Approximate BPTT. To demonstrate the power of FPTT as an online
training method, we used state-of-the-art deep spiking convolutional network architectures (SCNNs) for standard sequential
benchmarks from the literature and trained these architectures with LTC-SN neurons and FPTT.

In Table 2!, we compare the LTC-SNNs to existing state-of-the-art online and offline SNNs. We find that LTC-SCNNs
trained with FPTT consistently and substantially outperform SNNs trained with online BPTT approximations like OSTL and
e-prop. Compared to offline BPTT approaches, the FPTT-trained LTC-SNNs achieve state-of-the-art for SNNs (R-MNIST)
or achieve close to similar performance (PS-MNIST,S-MNIST, DVS-GESTURE), DVS-Cifar10); additionally, the memory
requirements for FPTT vs. BTTP trained networks were lower by up to a factor of 5 (Table ??) while the training time was only
slightly longer (Table ??).

Large-scale Object-detection: Spiking YOLO

The memory efficiency of FPTT-trained LTC-SNNs enables us to train SNNs of comparable complexity as modern ANNs: we
demonstrate this by training a large spike-based object-detection model based on the Tiny YOLO-v4 architecture®> 38, The
“You-Only-Look-Once’ (YOLO) architecture calculates both bounding boxes locations and object identities for all identifiable
objects in an image using a single pass through a deep neural network.

Our SPiking tiny Yolo-v4 network - SPYv4 - has 19 spiking convolutional layers with about 6.2M spiking neurons, 2
convolutional output layers and 14M parameters in total, illustrated in Fig. ??a. This makes it both larger and deeper than
previous end-to-end trained spiking models. Training a single time-step in the network requires less than 14GB of GPU-memory,
and as BPTT scales linearly with the number of time-steps, learning with BPTT in such a large network over multiple time-steps
is infeasible.

To carry out object detection, the network uses multiple reads of the input image, e.g. 4 or 8 times, as time-steps in the
network to obtain the final result; trained with FPTT, SPYv4 achieves a mean Average Precision (mAP) of 51.38% at 4 reads
and 53.25% at 8 reads (Fig. 3a) on the VOC dataset (see Methods); Fig. 3b shows examples of the detected and classified objects
from author acquired outside image captures. Neural activation in the network is highly sparse, with about 10% of neurons
active on average at each time-step. When receiving direct camera inputs images, inference achieves about 60 time-steps per
second on an NVIDIA RTX3090 equipped workstation, corresponding to processing 7 or 15 images per second. Fig. 3¢ shows
example activity from neurons from respectively a shallow (near input) and deep network layer while the network processes
a stream of images from webcam pointing either to a monitor running an author-collected video or the office environment:
neurons in the deeper layer fall silent when irrelevant stimuli are shown, while neurons closer to the inputs remain active. Earlier
work like Spiking-YOLO'® achieved mAP 51.83% with 8000 simulation time-steps; our SPYv4 network thus outperforms
these networks in performance, sparseness, and latency.

1Bold-faced denotes state-of-the-art (SoTa) online performance, slanted bold denotes overall SNN state-of-the-art.

4/14

Discussion

We showed how a recently proposed training approach for recurrent neural networks, FPTT, can be successfully applied to
long sequence learning with recurrent SNNs using Liquid Time-Constant Spiking Neurons. Compared to BPTT, FPTT is
compatible with online training, has constant memory requirements, and can learn longer sequences. The increased memory
efficiency of FPTT allows for training much larger SNNs as was previously feasible, as we demonstrated in the SPYv4 network
for object detection. In terms of accuracy, FPTT outperforms online approximations of BPTT like OSTL and e-prop, and
enabled a demonstration of online learning in tasks like DVS-CIFAR10. When training large convolutional LTC-SNNs with
FPTT, excellent performance is achieved, approaching or exceeding offline BPTT-based solutions using corresponding network
architectures — LTC-SNN specific architecture searches may improve results further.

To achieve efficient and accurate online learning with FPTT, we introduced Liquid Time-Constant Spiking Neurons
(LTC-SNs), where the neuron’s time-constants are calculated as a learned dynamic function of the current state and input.
When training on various tasks, BPTT failed to converge when applied to LTC-SNNs on long sequences due to diverging
gradients, while FPTT consistently converged. As we speculated, this suggests that FPTT provides for a more robust learning
signal. While LTC-SNs provide additional memory in the networks, and LTC-SNNs without recurrent connections were able to
solve shorter sequences, though not longer (Fig. ??), the optimal degree of network recurrency remains to be determined and
may allow for further efficiency and accuracy improvements>®. LTC-SNs maintain binary communication between neurons,
but impose additional calculations to determine the neuron state. In neuromorphic implementations, LTC-SNs could be
implemented as multi-compartment neurons or require novel spiking neuron model implementations.

The LTC-SN is inspired by multi-compartment modeling of pyramidal neurons in brains. Pyramidal neurons are known to
have complex non-linear interactions between different morphological parts far exceeding the simple dynamics of LIF-style
neurons*>#!, where the neuron’s apical tuft may calculate a modulating term acting on the computation in the soma*> that could
act similar to the trainable Liquid time-constants used in this work. In a similar vein, learning rules derived from weight-specific
traces may relate to synaptic tags*>** and are central to biologically plausible theories of learning working memory*. In
general, we find that FPTT, unlike BPTT, can also train networks of complex biologically realistic spiking neuron models, like
Izhikevich and Hodgkin-Huxley models (e.g. for the DVS-GESTURE task, Table ??). These considerations suggest variations
of FPTT may be potential candidates for temporal credit assignment mechanisms in the brain. As a candidate for biologically
plausible learning, the spatial error-backpropagation employed in FPTT would need to be replaced with a plausible spatial credit
assignment solution, where we anticipate that at least some of the current proposals*®*’ may be compatible. With such local
spatial credit-assignment, FPTT-training of LTC-SNNs can also likely be implemented efficiently on neuromorphic hardware.

Taken together, our work suggests that FPTT is an excellent training paradigm for large-scale SNNs comprised of complex
spiking neurons, with implications for both decentralized Al based on local neuromorphic computing and investigations of
biologically plausible neural processing.

Methods

Forward Propagation through Time. FPTT considers learning as a consensus problem between the network updates at
different time-steps, where the network update at each single time-step needs to move toward the same converged optimal
weights. To achieve this, FPTT updates the network parameters W by optimising the instantaneous risk function éfy",
which includes the ordinary objective .Z; and also a dynamic regularisation penalty %; based on previously observed losses
(7" = %+ %, (see Appendix A in the SI for details). In FPTT, the empirical objective .Z(y,, ;) is the same as for BPTT,
representing a function of the gap between target values y, and real time predictions J.

As in®, the FPTT-specific dynamic regularization is controlled by a form of running average of all the weight-updates
calculated so far W, where the update schema of this regularizer %, is as follows:

o - 1
HW) = 5 | W =Wy = 5 Via (W) || (1a)
W1 =W —nVwl(W,) (1b)

_ 1 - 1
W1 = E(Vvt + W) — ﬂVlt(VVH—l)' (Ic)

Here, the state vector W; summarises past losses: the update is first a normal update of parameters W, based on gradient
optimization with fixed W;, after which W, is optimized with fixed W;. This approach allows the RNN parameters to converge to
a stationary solution of the traditional RNN objective®. Note that in Eq. 1c, the loss VI, (W, 1) is estimated as in®, avoiding
propagating the gradient through Eq. 1b, where the Vy/ [(W;) calculates the direct spatial gradient.

The plain FPTT learning process requires the acquisition of an instantaneous loss /; at each time step. This is natural for
sequence-to-sequence modeling tasks and streaming tasks where a loss is available for each time step; for temporal sequence

514

classification tasks however, the target value is only determined after processing the entire time series. To apply FPTT to
learning such tasks in an online manner, a divergence term was introduced® in the form of an auxiliary loss to reduce the
distance between the prediction distribution 2 and target label distribution Q:

b= Bl (9y,y) + (1= B)E™,)
where B € [0,1]; I°F is the classical cross-entropy for a classification loss and /9" = — Y;0(5)log P(3) is the divergence term.
We use the auxiliary loss in all experiments as in® with = 1, where T is the sequence length. Note that variants of FPTT,
FPTT-K?, update K times during the sequence rather than every time-step, plain FPTT corresponds to FPTT-T. Absent the
dynamic regularization through W FPTT-T amounts to spatial error-backpropagation (BP) without backpropagation-through-

time — the absence of these regularization terms drastically reduces accuracy, both for plain BP as well as for truncated BPTT
(Fig. ??).

Training networks of spiking neurons. To apply FPTT to SNNs, we define the spiking neuron model and specify how BPTT
and FPTT are applied to such networks. All networks were trained using batches as in® to exploit GPU parallelism; reduction
to batch-size=1 yielded similar results (e.g. Fig. ??).

An SNN is comprised of spiking neurons which operate with non-linear internal dynamics. These non-linear dynamics
consist of three main components:

(1) Potential Updating: the neurons’ membrane potential #, updates following the equation:

wy = f(ur—1,%,5-1|W,) (3
where 7 is the set of internal time constants and W is the set of associated parameters, like synaptic weights. The membrane
potential evolves based on previous neuronal states (e.g. potential u,_; and spike-state s,_; = {0, 1}) and current inputs x;.

Training the time constants 7 in the spiking neurons is known to optimize performance by matching the neuron’s temporal
dynamics of the task'®%’.

(2) Spike generation: A neuron will trigger a spike s; = 1 when its membrane potential u, crosses a threshold 6 from
below, described as a discontinuous function:

st = fy(ur,8) = {1’ i =0 4)

0, otherwise
(3) Potential resting: When a neuron emits a spike (s; = 1), its membrane potential will reset to resting potential u,:
wp = (1 —s;)u; +ups;, 5)

where in all experiments, we set u, = 0.

BPTT for SNNs BPTT for SNNs amounts to the following: given a training example {x,y} of T time steps, the SNN generates
a prediction y; at each time step. At time ¢, the SNN parameters are optimized by gradient descent through BPTT to minimize
the instantaneous objective ¢, = % (y;, ;). The gradient expression is the sum of the products of the partial gradients, defined
by the chain rule as

ol Ol 3% ds; | (L uy, >8sm1 ©

ow = a5 as aw &\ M 9w, | “ow

where the partial derivative of spiking % is calculated by a surrogate gradient associate with membrane potential u,. Here, we

use the Multi-Gaussian surrogate gradient function f’ (u;,0)! to approximate this partial term.

The computational graph of BPTT is illustrated in Table 1 and shows that the partial derivative term depends on two pathways,
duy . Juy iy Ism_1

Ty = Fuy T T s Tu The product of these partial terms may explode or vanish in RNNs, and this phenomenon becomes
even more pronounced in SNNs as the discontinuous spiking process is approximated by the continuous surrogate gradient and
the incurred gradient error accumulates and amplifies.

FPTT for SNNs. FPTT can be used for training SNNs by minimizing the instantaneous loss with the dynamic regularizer
(" = 2(y,,5,) + Z(W;). The update function Equation (6) then becomes:

o4 _ 9l 951 Is: dus o
aW h a)/)\[as, al/lt aW

Compared to Equation (6), Equation (7) has no dependence on a chain of past states, and can thus be computed in an online
manner.

6/14

Liquid Time-Constant Spiking Neurons The LTC-SN is modeled as a standard adaptive spiking neuron'-!! where the time
constants 7 (here, membrane time constant 7, and adaptation time constant T,4,) are a dynamic and learned function of internal
dynamic state variables like membrane potential u and deviation'! 5. In the network, time-constants are either calculated as
a function @ = exp(—dt/1,) = o(Dense|x;,u;_1]), for non-convolutional networks, or using a 2D convolution for spiking
convolutional networks, a = exp(—dt/t,) = o(Conv([x;,u;—1])), where we use a sigmoid function o(-) to scale the inverse of
the time constant to a range of 0 to 1, ensuring smooth changes when learning. This results in a Liquid Time-Constant Spiking
Neuron i defined as:

Taap update pi= exp(—dt/fédp) = o(Denseq) [x,b 4] (8a)
Taupdate : o =exp(—dt/t.,) = o(Densey[x;,ul_,]) (8b)
6, update : b =p'bi_ | +(1—p')s_|;6/=0.1+1.8b! (8¢c)
wupdate :du' = —ul | +x;u = alul |+ (1—aol)du' (8d)
spikes, st = f(ul,0") (8e)
resetting Ul = ul (1 —s') 4 tyesst, (8f)

1

where the neuron uses an adaptive threshold 6, as in the Adaptive Spiking Neurons!!, resting potential u,.;; = 0, and time-

constants 7', and r(i dp Are computed as liquid time-constants of neuron i.

Datasets We focus on a number of datasets suitable for temporal classification, where the goal is to obtain high accuracy
read-out on test-samples at the final time-step 7 of the sequence. For the Add-task, the trained networks consist of 128
recurrently connected neurons of respective types LTC-SN (LTC-SNN), LSTM, or Adaptive Spiking Neuron'' (ASRNN), and
a dense output layer with only 1 neuron.

For the DVS-GESTURE dataset, each frame is a 128-by-128 size image with 2 channels. Each sample in the DVS-
GESTURE dataset was split into fixed-duration blocks as in'®, where each block is averaged to a single frame. This conversion
results in sequences of up to 1000 frames depending on block length. As input for the shallow SRNN as used in the increasingly
long sequence setting, we first down-sample the frame of a 128-by-128 image into a 32-by-32 image by averaging each 4-by-4
pixel block. The 2D image at each channel is then flattened into a 1D vector of length 1024. For each channel of the image,
the network consists of a spike-dense input layer consisting of 512 neurons as an encoder, where the information of each
channel is then fused into a 1D binary vector through concatenation. This 1D vector is then fed to a recurrently connected
layer with 512 hidden neurons. Finally, a leaky integrator is applied to generate predictions, resulting in a network architecture
[1024,1024]-[512D,512D]-512R-111". All networks were trained for 30 epochs using the Adam optimizer with initial learning
rate 3e-3, using the same initialization schemes and learning-rate scheme for all networks to compare the effect of neural units.
Hyperparameters for ASRNNs were taken from!.

To achieve high performance with SCNNs, we applied FPTT with LTC-SNs to high-performance architectures from the
literature, where we used hyperparameter settings for the surrogate gradient from>” and from® for FPTT training. Specifically,
in (P)S-MNIST, we used a shallow network with one recurrent layer comprised of 512 hidden neurons and an output layer
consisting of 10 (number of classes) leaky integrator neurons. The FPTT-trained LTC-SNNs are optimized using Adam*® with a
batch size of 128 using 200 training epochs. We set the initial learning rate to 3e-3 and decay by half after 30, 80, and 120 epochs.
For the S-MNIST and PS-MNIST tasks, we also find that the leak time-constants of the output units after training averaged
87ms £13ms (S-MNIST) and 65ms=£12ms (PS-MNIST), substantially shorter than the sequence length and demonstrating that
the recurrent network maintains working memory. For R-MNIST, we follow the architecture from'?: an SNN with two hidden
layers of 256 neurons, each followed by 10 output neurons. The SNN is given 20 presentations of the image, after which the
classification is determined. For the static MNIST and Fashion MNIST datasets, we apply the architecture from'®: an SCNN
with 3 convolutional layers, 1 Dense layer and 1 leaky Integrator output layer (ConvK3C32S1P1-MPK2S2-ConvK3C128S1P1-
MPK2S2-ConvK3C256S1P1-MPK2S2-512D-10I. To describe the network structure, we follow standard conventions as follows:
ConvK7C64S1P1 represents the convolutional layer with out put channels = 64, kernel size =7, stride = 1 and padding = 3.
MPK2S2 is the max-pooling layer with kernelsize = 2 and stride = 2. 512D and 512R represents the fully connected
spiking layer and recurrent spiking layer respectively with out put features = 512. 101 indicates the leaky integrator with the
out put feature = 10.). The resulting LTC-SCNN network was then optimized using FPTT and Adamax with a batch size of 64
and an initial learning rate of le-3. For the DVS-GESTURE and DVS-CIFAR10 datasets, we also follow the high-performance
architecture from'® and use 20 sequential frames, where the network makes a prediction only after reading the entire sequence.
The LTC-SCNN thus has a structure ConvK7C64S1P3-MPK2S2-ConvK7C128S1P3-MPK2S2-ConvK3C128S1P1-MPK2S2-
ConvK3C256S1P1-MPK2S2-ConvK3C256S1P1-MPK2S2-ConvK3C512S1P1-MPK2S2-512D-111. These networks were
optimized through Adamax*® with a batch size of 16 and initial learning rate of le-3.

714

For all networks, to measure GPU memory consumption, the GPU management interface ‘“nvidia-smi” was used.

Spiking Tiny YOLOv4 — SPYv4. The SPYv4 network follows the Tiny YOLO-v4 architecture>>38. The backbone of the
network consists of three CSP-Blocks in the cross-stage partial network. In contrast to regular additive residual connections,
the CSP-Block is spike-based rather than event-based as residual connections are constructed by concatenation rather than
using an adding operation, ensuring that only binary spikes are used for information transfer between layers. Raw pixel values
are fed directly into the network as input currents. As the object recognition task necessitates a more precise output vector to
draw the bounding box, we use a single standard conventional convolutional layer instead of a spiking convolutional layer.

We trained and evaluated our model on Pascal VOC dataset'” as was done in'®: the network was trained using a combination
of VOC2007 and VOC2012 (16551 images), and evaluated on the validation dataset of VOC2007 (4952 images).

For target detection, we use a threshold on the Intersection Over Union (IOU), i.e., the ratio of the intersection of the
prediction box and the ground truth box of the target, to indicate whether the detection is correct. A target is considered to
be correctly detected when the IOU exceeds the threshold. The average precision (AP) is then computed as the average of
all the precision for all possible recall values, and the mAP is the average of the AP of multiple classification tasks. Training
maximizes the mAP@: the mean average precision of the calculated bounding box exceeding an overlap threshold ¥ over the
actual boundaries of the object in the dataset, where we use ¥ = 0.5.

We applied both mosaic data augmentation®® and label smoothing during training to obtain better performance. In the
mosaic enhancement, the network uses a mosaic of 4 images during training instead of a single image; this is applied only
during the first 200 training cycles. The network was optimized by Adagrad with a batch size of 32 and an initial learning rate
of le-3.

Data Availability

In this paper, publicly available datasets were utilized. The MNIST dataset can be accessed at http://yann.lecun.
com/exdb/mnist/, while the Fashion MNIST dataset is available at https://github.com/zalandoresearch/
fashion-mnist. The DVS-GESTURE dataset can be download at https://research.ibm.com/interactive/
dvsgesture/, and the DVS-Cifar10 dataset can be obtained from https://figshare.com/articles/dataset/
CIFAR10-DVS_New/4724671/2. Additionally, the PASCAL VOCO07 and VOC2012 datasets are publicly available at
http://host.robots.ox.ac.uk/pascal/VOC/index.html. Itis important to note that no software was used in
the collection of data.

Code Availability

The code used in the study is publicly available from the GitHub repository https://github.com/byin-cwi/sFPTT/
tree/v1.0.0.

Acknowledgements

BY is supported by the NWO-TTW Programme “Efficient Deep Learning” (EDL) P16-25, and SB is supported by the European
Union (grant agreement 7202070 “Human Brain Project”). The authors are grateful to Henk Corporaal for reading the
manuscript and providing constructive remarks.

Author contributions statement

B.Y., F.C. and S.B. conceived the experiment(s), B.Y. conducted the experiment(s), B.Y., F.C. and S.B. analysed the results. All
authors reviewed the manuscript.

Competing interests statement

The authors declare no competing interests.

8/14

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://research.ibm.com/interactive/dvsgesture/
https://research.ibm.com/interactive/dvsgesture/
https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2
https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2
 http://host.robots.ox.ac.uk/pascal/VOC/index.html
https://github.com/byin-cwi/sFPTT/tree/v1.0.0
https://github.com/byin-cwi/sFPTT/tree/v1.0.0

Tables

Table 1. Computational complexity of gradients, parameter updates and memory storage per sample, with N the batch-size.
Computational expense increases as the length T of the sequence grows. i.e. c(1) < ¢(T). After®.

. Gradient arameter | Memor
Algorithm Update %pdate Storagey
BPTT Q(c(T)T) Q(1) Q(T)
RTRL Q(c(T)T?) | Q(T) Q(T)
e-prop/ OSTL | Q(c(1)T) Q(T) Q(1)
FPTT Q(e(1)T) Q(T) Q(1)

Table 2. Test accuracy of deep SRNNs/SCNNs on various tasks. We apply FPTT-trained LTC-SNNs with one recurrent layer
comprised of 512 neurons on the (P)S-MNIST tasks. For RMNIST, an identical network structure as in'? is used, and for the
remaining benchmarks the network structures match'.

Task Online baseline This work Offline SoTa
S-MNIST - FPTT+LTC 97.37% || BPTT+ASRNN! 98.7%
PS-MNIST - FPTT+LTC 93.23% || BPTT+ASRNN! 94.3%
RMNIST OSTL + SNU'23% 05349 | FPTT+LTC 98.63% || BPTT+SNU* 97.72%
MNIST DECOLLE+SNN® 98.0% | FPTT+LTC 99.62% || BPTT+PLIF® 99.72%
Fashion MNIST | EMSTDP+SNN3® 853% | FPTT+LTC 93.58% || BPTT+PLIF!® 94.38%
DVS-GESTURE | DECOLLE+SNN3’ 95.54% | FPTT+LTC 97.22% || BPTT+PLIF'® 97.57%
DVS-CIFAR10 | - FPTT+LTC 73.2% BPTT+PLIF® 74.8%

9/14

Figure Legends/Captions

Mean Spiking Frequency Fr

BPTT FPTT
== Vet 0 D Yot % Dm
[— I —
Lo b L P e e
L L I Ll
Prediction B © 6 on ®B) oW
I -
s B2 = %) Gm S22 &8 G0 G
Y NN N N N |
Potential u,_p "= U,_"— U, T Uy Upp ™ Uy U T Uy
L0 |
Inputs Xy X, X1 Fq z, e
0.5 Wp=1;W,=-1
0.4
Wi =05 ;W,=-05
Wn=1;Wa=1
0.3
0.2
Wy =0.5;W,=0.5
0.1
W =-0.5W,=0
/ Wi =05 W) =-
Wp=-1;W,=1
0.0 T T . - W =-1,W,=-1
0.2 0.4 0.6 0.8 1.0

Input Current /

Input x,

Liquid Time-Constant

Potential 1,

I B
Output s,

8
t/1000

Figure 1. a, Roll-out of the computational graph of a spiking neuron as used for BPTT (left) and FPTT (right); b, Illustration

of LIF (left) and LTC (right) spiking neurons as recurrent network structures. ¢, F-I curve of a LTC spiking neuron for
combinations of effective LTC weights Wy = {Wy,, . Wy, }: W, =

{~1-05,0.5,1} and Wy, = {~1-0.5,0.5,1}

associated with respective dynamic time-constant functions ¢ subject to input current /. d, Response firing rate Fr of LTC
spiking neuron to varying current input / (top) for combinations of effective LTC weights Wr,, = {—1,1} and W, = {—1,1}.

10/14

1o T = 1000 T = 1000
' —— BPTT: ASRNN 0.35{ mmm BPTT W FPTT °
0.8 ~—— FPTT: ASRNN 0.30] ™ TBPTT-1
' ---- BPTT: LSTM
---- FPTT:LSTM 0.25 .
.06 —— BPTT: LTC-SRNN 0 0.20 . °
8 —— FPTT: LTC-SRNN 3
0.4 TBPTT-L LTC-SRNN 0.15
0.10
0.2 0.05
. I - 0.00 - —4—
0.0 — : ' : : ; , :
0 2000 4000 6000 8000 10000 LST™ RNN ASRNN LTC-SRNN
c Training iteration
100 B [STM-BPTT B ASRNN-BPTT Eam [TC-BPTT B TC-TBPTT1 mm ASRNN-FPTT BB LTC-FPTT
90
> 80
()
e
5 70
8 °
o
< 60 o e
il
'G—J 50
40
w0l +* *
D20l le 2ol dy oAl de 22 adlede el ody 2rodlDde
00000000000% OOOO%%%O% 0000%%%0% 0000000000% 0000%%%% 00000000000%
Input Frames
d DVS Gesture e R-MNIST

GPU Running Mem: GB

EEE BPTT WM FPTT W TBPTT1

20406080100

200
Input Frames

N w > w

GPU Running Mem: GB

o

s BPTT

2060100

EEE FPTT W TBPTT1 -

200

500
Input Frames

1000

Figure 2. a, Example loss-curves for networks trained on the Add-task with sequence length 7 = 1000 for BPTT,
Truncated-BPTT for truncation length 1 (TBPTT-1, equivalent to BP at each time step) and FPTT. The loss of BPTT-trained
LTC-SNN becomes NaN after 2000 iterations. b, corresponding average loss and std of the last 100 training iterations
(obtained from 5 runs). ¢, Plot of test accuracy for BPTT, T-BPPT1 and FPTT trained shallow networks on the DVS-GESTURE

dataset. Accuracy bar average and std over 3 runs and individual data points are inserted; (*): training diverged; reported
accuracy is the best accuracy before divergence; (+): out-of-GPU-memory when training. d,e, GPU-memory use when training
the DVS-GESTURE dataset (d) or R-MNIST dataset (e) for different sequence lengths with BPTT, TBPTT-1 and FPTT.

Reference
References

1. Yin, B., Corradi, F. & Bohte, S. M. Accurate and efficient time-domain classification with adaptive spiking recurrent neural
networks. Nat Mach Intell 3, 905-913 (2021).

2. Stuijt, J., Sifalakis, M., Yousefzadeh, A. & Corradi, F. ubrain: An event-driven and fully synthesizable architecture for
spiking neural networks. Front. neuroscience 15, 538 (2021).

11/14

Figure 3. a, Mean Average Precision (mAP) and components for classification and recognition of 20 different kinds of objects
in SPYv4 on the PASCAL VOCO07 dataset. b, An example of object recognition with Spiking-YOLO on a sequence of
author-collected cell-phone images in Rotterdam, the Netherlands. Objects are localized and identified for each image
independently. ¢, SPYv4 applied to streaming video as obtained from a webcam moving between filming an author-collected
video clip and the surrounding environment. Top: example images, bottom: raster plot of spiking activity for 100 spiking
neurons randomly drawn from the shallow and deep layer.

. Perez-Nieves, N., Leung, V. C. H., Dragotti, P. L. & Goodman, D. F. M. Neural heterogeneity promotes robust learning.

Nat. Commun. 12, 5791 (2021).

. Keijser, J. & Sprekeler, H. Interneuron diversity is required for compartment-specific feedback inhibition. bioRxiv (2020).

5. Bohte, S. M. Error-backpropagation in networks of fractionally predictive spiking neurons. In International Conference on

11.

12.

Artificial Neural Networks, 60—68 (Springer, 2011).

. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of

gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 36, 51-63 (2019).

. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Adv. neural information processing

systems: NeurIPS 32, 80268037 (2019).

. Kag, A. & Saligrama, V. Training recurrent neural networks via forward propagation through time. In International

Conference on Machine Learning, 5189-5200 (PMLR, 2021).

. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255-260 (2022).
10.

Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural
computation 1, 270-280 (1989).

Bellec, G. et al. A solution to the learning dilemma for recurrent networks of spiking neurons. Nat. communications 11,
1-15 (2020).

Bohnstingl, T., WoZniak, S., Pantazi, A. & Eleftheriou, E. Online spatio-temporal learning in deep neural networks. IEEE
Transactions on Neural Networks Learn. Syst. (2022).

12/14

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.
24,
25.

26.
27.

28.

29.

30.

31.
32.

33.

34.

35.
36.

37.

38.

He, Y. et al. A 28.2 uw neuromorphic sensing system featuring snn-based near-sensor computation and event-driven
body-channel communication for insertable cardiac monitoring. In 2021 IEEE Asian Solid-State Circuits Conference
(A-SSCC), 1-3 (2021).

Hasani, R., Lechner, M., Amini, A., Rus, D. & Grosu, R. Liquid time-constant networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, 7657-7666 (2021).

Amir, A. et al. A low power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 7243-7252 (2017).

Fang, W. et al. Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2661-2671 (2021).

Everingham, M., Van Gool, L., Williams, C. K., Winn, J. & Zisserman, A. The pascal visual object classes (voc) challenge.
Int. journal computer vision 88, 303-338 (2010).

Kim, S., Park, S., Na, B. & Yoon, S. Spiking-yolo: spiking neural network for energy-efficient object detection. In
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 11270-11277 (2020).

Chakraborty, B., She, X. & Mukhopadhyay, S. A fully spiking hybrid neural network for energy-efficient object detection.
IEEFE Transactions on Image Process. 30, 9014-9029 (2021).

Royo-Miquel, J., Tolu, S., Schoéller, F. E. & Galeazzi, R. Retinanet object detector based on analog-to-spiking neural
network conversion. In 8th International Conference on Soft Computing & Machine Intelligence (2021).

Zhou, S., Chen, Y., Li, X. & Sanyal, A. Deep scnn-based real-time object detection for self-driving vehicles using lidar
temporal data. IEEE Access 8, 76903-76912 (2020).

Jiang, Z., Zhao, L., Li, S. & Jia, Y. Real-time object detection method based on improved yolov4-tiny. arXiv preprint
arXiv:2011.04244 (2020).

Werbos, P. J. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 1550-1560 (1990).
Elman, J. L. Finding structure in time. Cogn. science 14, 179-211 (1990).

Mozer, M. C. Neural net architectures for temporal sequence processing. In Santa Fe Institute Studies in the Sciences of
Complexity-Proceedings Volume-, vol. 15, 243-243 (1993).

Murray, J. M. Local online learning in recurrent networks with random feedback. ELife 8, 43299 (2019).

Knight, J. C. & Nowotny, T. Efficient GPU training of LSNNSs using eprop. In Neuro-Inspired Computational Elements
Conference, NICE 2022, 8—10 (Association for Computing Machinery, New York, NY, USA, 2022).

Bohte, S. M., Kok, J. N. & La Poutre, H. Error-backpropagation in temporally encoded networks of spiking neurons.
Neurocomputing 48, 17-37 (2002).

Yin, B., Corradi, F. & Bohté, S. M. Effective and efficient computation with multiple-timescale spiking recurrent neural
networks. In International Conference on Neuromorphic Systems 2020, 1-8 (2020).

Scherr, F. & Maass, W. Analysis of the computational strategy of a detailed laminar cortical microcircuit model for solving
the image-change-detection task. bioRxiv (2021).

Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735-1780 (1997).

Li, H., Liu, H., Ji, X,, Li, G. & Shi, L. Cifar10-dvs: an event-stream dataset for object classification. Front. neuroscience
11, 309 (2017).

Gerstner, W., Kreiter, A. K., Markram, H. & Herz, A. V. Neural codes: firing rates and beyond. Proc. Natl. Acad. Sci. 94,
12740-12741 (1997).

Wozniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep learning incorporating biologically inspired neural
dynamics and in-memory computing. Nat. Mach. Intell. 2, 325-336 (2020).

Zou, Z. et al. Memory-inspired spiking hyperdimensional network for robust online learning. Sci. reports 12, 1-13 (2022).

Shrestha, A., Fang, H., Wu, Q. & Qiu, Q. Approximating back-propagation for a biologically plausible local learning rule
in spiking neural networks. In Proceedings of the International Conference on Neuromorphic Systems, 1-8 (2019).

Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep continuous local learning (decolle). Front.
Neurosci. 14, 424 (2020).

Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934 (2020).

13/14

39.

40.

41.

42,

43.
44.

45.

46.

47.

48.
49.

Kalchbrenner, N. et al. Efficient neural audio synthesis. In International Conference on Machine Learning, 2410-2419
(PMLR, 2018).

Sacramento, J., Ponte Costa, R., Bengio, Y. & Senn, W. Dendritic cortical microcircuits approximate the backpropagation
algorithm. Adv. Neural Inf. Process. Syst. NeurIPS 31, 8721-8732 (2018).

Beniaguev, D., Segev, I. & London, M. Single cortical neurons as deep artificial neural networks. Neuron 109, 2727-2739
(2021).

Larkum, M. E., Senn, W. & Liischer, H.-R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons.
Cereb. Cortex 14, 1059-1070 (2004).

Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533-536 (1997).

Moncada, D., Ballarini, F., Martinez, M. C., Frey, J. U. & Viola, H. Identification of transmitter systems and learning tag
molecules involved in behavioral tagging during memory formation. Proc. Natl. Acad. Sci. 108, 12931-12936 (2011).

Rombouts, J. O., Bohte, S. M. & Roelfsema, P. R. How attention can create synaptic tags for the learning of working
memories in sequential tasks. PLoS computational biology 11, €1004060 (2015).

Pozzi, 1., Bohte, S. & Roelfsema, P. Attention-gated brain propagation: How the brain can implement reward-based error
backpropagation. Adv. Neural Inf. Process. Syst. NeurIPS 33 (2020).

Scellier, B. & Bengio, Y. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation.
Front. computational neuroscience 11, 24 (2017).

Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. /CLR (2015).
Yin, B. Code of paper, DOI: 10.5281/ZENODO.7498559 (2023).

14/14

10.5281/ZENODO.7498559

	References

