The derivation of a Moving Boundary Approximation or of the response of a coherent structure like a front, vortex or pulse to external forces and noise, is generally valid under two conditions: the existence of a separation of time scales of the dynamics on the inner and outer scale and the existence and convergence of solvability type integrals. We point out that these conditions are not satisfied for pulled fronts propagating into an unstable state: their relaxation on the inner scale is power law like and in conjunction with this, solvability integrals diverge. The physical origin of this is traced to the fact that the important dynamics of pulled fronts occurs in the leading edge of the front rather than in the nonlinear internal front region itself. As recent work on the relaxation and stochastic behavior of pulled fronts suggests, when such fronts are coupled to other fields or to noise, the dynamical behavior is often qualitatively different from the standard case in which fronts between two (meta)stable states or pushed fronts propagating into an unstable state are considered.

, , , , ,
Modelling, Analysis and Simulation [MAS]
Computational Dynamics

Ebert, U, & van Saarloos, W. (2000). Breakdown of the standard perturbation theory and moving boundary approximation for pulled fronts. Modelling, Analysis and Simulation [MAS]. CWI.