This paper presents a novel method for the reconstruction of high-resolution temporal images in dynamic tomographic imaging, particularly for discrete objects with smooth boundaries that vary over time. Addressing the challenge of limited measurements per time point, we propose a technique that incorporates spatial and temporal information of the dynamic objects. Our method uses the explicit assumption of homogeneous attenuation values of discrete objects. We achieve this computationally through the application of the level-set method for image segmentation and the representation of motion via a sinusoidal basis. The result is a computationally efficient and easily optimizable variational framework that enables the reconstruction of high-quality 2D or 3D image sequences with a single projection per frame. Compared to variational regularization-based methods using similar image models, our approach demonstrates superior performance on both synthetic and pseudo-dynamic real X-ray tomography datasets. The implications of this research extend to improved visualization and analysis of dynamic processes in tomographic imaging, finding potential applications in diverse scientific and industrial domains. The supporting data and code are provided.

, , , , , , , , , , ,
Computational Imaging

Kadu, A., Lucka, F., & Batenburg, J. (2023). Single-shot tomography of discrete dynamic objects.