2022-04-13
Plusmine: Dynamic Active Learning with Semi-Supervised Learning for automatic classification
Publication
Publication
Presented at the
2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021 (December 2021), Virtual, Online
A major problem in cybersecurity research is the correct labeling of up-to-date datasets. It relies on the availability of human experts, and is as such very cumbersome. Motivated by this, two techniques have been proposed for efficient labeling: Active Learning (AL) and Semi-Supervised Learning (SeSL). In this paper, we introduce Plusmine: an intrusion detection method that combines the benefits of AL and SeSL to efficiently automate classification. We develop new techniques for both components. Moreover, we empirically show that Plusmine obtains good and more robust results than benchmark methods.
Additional Metadata | |
---|---|
, , , , | |
doi.org/10.1145/3486622.3493948 | |
ACM International Conference Proceeding Series | |
2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021 | |
Organisation | Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands |
Klein, J.G, Bhulai, S, Hoogendoorn, M, & van der Mei, R.D. (2022). Plusmine: Dynamic Active Learning with Semi-Supervised Learning for automatic classification. In Proceedings of the International Conference on Web Intelligence and Intelligent Agent Technology (pp. 146–153). doi:10.1145/3486622.3493948
|