Many quantum algorithms critically rely on quantum walk search, or the use of quantum walks to speed up search problems on graphs. However, the main results on quantum walk search are scattered over different, incomparable frameworks, such as the hitting time framework, the MNRS framework, and the electric network framework. As a consequence, a number of pieces are currently missing. For example, recent work by Ambainis et al. (STOC’20) shows how quantum walks starting from the stationary distribution can always find elements quadratically faster. In contrast, the electric network framework allows quantum walks to start from an arbitrary initial state, but it only detects marked elements.

We present a new quantum walk search framework that unifies and strengthens these frameworks, leading to a number of new results. For example, the new framework effectively finds marked elements in the electric network setting. The new framework also allows to interpolate between the hitting time framework, minimizing the number of walk steps, and the MNRS framework, minimizing the number of times elements are checked for being marked. This allows for a more natural tradeoff between resources. In addition to quantum walks and phase estimation, our new algorithm makes use of quantum fast-forwarding, similar to the recent results by Ambainis et al. This perspective also enables us to derive more general complexity bounds on the quantum walk algorithms, e.g., based on Monte Carlo type bounds of the corresponding classical walk. As a final result, we show how in certain cases we can avoid the use of phase estimation and quantum fast-forwarding, answering an open question of Ambainis et al.

, ,
Quantum algorithms and applications , Quantum Computation with Bounded Space (nwo/639.021.752)
Algorithms and Complexity

Apers, S.M.G, Gilyén, A.P, & Jeffery, S. (2021). A unified framework of quantum walk search. In Proceedings of International Symposium on Theoretical Aspects of Computer Science (pp. 6:1–6:13). doi:10.4230/LIPIcs.STACS.2021.6