The upper critical field in type II superconductors is limited by the Pauli paramagnetic limit. In superconductors with strong Rashba spin-orbit coupling this limit can be overcome by forming a helical state. Here we quantitatively study the magnetic field-temperature phase diagram of finite-size superconductors with Rashba spin-orbit coupling. We discuss the effect of finite size and shape anisotropy. We demonstrate that the critical field is controllable by intrinsic parameters such as spin-orbit coupling strength and tunable parameters such as sample geometry and applied field direction. Our study opens new avenues for the design of superconducting spin-valves.