Given the pressing need for assuring algorithmic transparency, Explainable AI (XAI) has emerged as one of the key areas of AI research. In this paper, we develop a novel Bayesian extension to the LIME framework, one of the most widely used approaches in XAI – which we call BayLIME. Compared to LIME, BayLIME exploits prior knowledge and Bayesian reasoning to improve both the consistency in repeated explanations of a single prediction and the robustness to kernel settings. BayLIME also exhibits better explanation fidelity than the state-of-the-art (LIME, SHAP and GradCAM) by its ability to integrate prior knowledge from, e.g., a variety of other XAI techniques, as well as verification and validation (V&V) methods. We demonstrate the desirable properties of BayLIME through both theoretical analysis and extensive experiments.

Proceedings of Machine Learning Research
37th Conference on Uncertainty in Artificial Intelligence
Intelligent and autonomous systems

Zhao, X, Huang, W, Huang, X, Robu, V, & Flynn, D. (2021). BayLIME: Bayesian local interpretable model-agnostic explanations. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp. 887–896).