Matrix scaling and matrix balancing are two basic linear-algebraic problems with a wide variety of applications, such as approximating the permanent, and pre-conditioning linear systems to make them more numerically stable. We study the power and limitations of quantum algorithms for these problems. We provide quantum implementations of two classical (in both senses of the word) methods: Sinkhorn's algorithm for matrix scaling and Osborne's algorithm for matrix balancing. Using amplitude estimation as our main tool, our quantum implementations both run in time Õ(√mn/∈4) for scaling or balancing an n×n matrix (given by an oracle) with m non-zero entries to within ℓ1-error ∈. Their classical analogs use time Õ(m/∈2), and every classical algorithm for scaling or balancing with small constant ∈ requires Ω(m) queries to the entries of the input matrix. We thus achieve a polynomial speed-up in terms of n, at the expense of a worse polynomial dependence on the obtained ℓ1-error ∈. Even for constant ∈ these problems are already non-trivial (and relevant in applications). Along the way, we extend the classical analysis of Sinkhorn's and Osborne's algorithm to allow for errors in the computation of marginals. We also adapt an improved analysis of Sinkhorn's algorithm for entrywise-positive matrices to the ℓ1-setting, obtaining an Õ(n1.5/∈3)-time quantum algorithm for ∈-ℓ1-scaling. We also prove a lower bound, showing our quantum algorithm for matrix scaling is essentially optimal for constant ∈: every quantum algorithm for matrix scaling that achieves a constant ℓ1-error w.r.t. uniform marginals needs Ω(√ mn) queries.

, ,
Leibniz International Proceedings in Informatics
Quantum algorithms and applications
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

van Apeldoorn, J.T.S, Gribling, S.J, Li, Y, Nieuwboer, H.A, Walter, M, & de Wolf, R.M. (2021). Quantum algorithms for matrix scaling and matrix balancing. In International Colloquium on Automata, Languages, and Programming (pp. 110:1–110:17). doi:10.4230/LIPIcs.ICALP.2021.110