Flying insects are capable of vision-based navigation in cluttered environments, reliably avoiding obstacles through fast and agile maneuvers, while being very efficient in the processing of visual stimuli. Meanwhile, autonomous micro air vehicles still lag far behind their biological counterparts, displaying inferior performance at a much higher energy consumption. In light of this, we want to mimic flying insects in terms of their processing capabilities, and consequently show the efficiency of this approach in the real world. This letter does so through evolving spiking neural networks for controlling landings of micro air vehicles using optical flow divergence from a downward-looking camera. We demonstrate that the resulting neuromorphic controllers transfer robustly from a highly abstracted simulation to the real world, performing fast and safe landings while keeping network spike rate minimal. Furthermore, we provide insight into the resources required for successfully solving the problem of divergence-based landing, showing that high-resolution control can be learned with only a single spiking neuron. To the best of our knowledge, this work is the first to integrate spiking neural networks in the control loop of a real-world flying robot. Videos of the experiments can be found at

, , , ,
IEEE Robotics and Automation Letters

Hagenaars, J., Paredes-Vallés, F., Bohte, S., & De Croon, G.C.H.E. (Guido C. H. E.). (2020). Evolved Neuromorphic Control for High Speed Divergence-Based Landings of MAVs. IEEE Robotics and Automation Letters, 5(4), 6239–6246. doi:10.1109/LRA.2020.3012129