With tomography it is possible to reconstruct the interior of an object without destroying. It is an important technique for many applications in, e.g., science, industry, and medicine. The runtime of conventional reconstruction algorithms is typically much longer than the time it takes to perform the tomographic experiment, and this prohibits the real-time reconstruction and visualization of the imaged object. The research in this dissertation introduces various techniques such as new parallelization schemes, data partitioning methods, and a quasi-3D reconstruction framework, that significantly reduce the time it takes to run conventional tomographic reconstruction algorithms without affecting image quality. The resulting methods and software implementations put reconstruction times in the same ballpark as the time it takes to do a tomographic scan, so that we can speak of real-time tomographic reconstruction.