Typing characteristics on smartphones can provide clues for emotion detection. Collecting large volumes of typing data is also easy on smartphones. This motivates the use of Deep Neural Network (DNN) to determine emotion states from smartphone typing. In this work, we developed a DNN model based on typing features to predict four emotion states (happy, sad, stressed, relaxed) and investigate its performance on a smartphone. The evaluation of the model in a 3-week study with 15 participants reveals that it can reliably detect emotions with an average accuracy of 80% with peak CPU utilization less than 15%.

Additional Metadata
Keywords Emotion detection, Typing, Deep neural network, Smartphone
Persistent URL dx.doi.org/10.1145/3241539.3267761
Note Poster presentation
Citation
Ghosh, S, Ganguly, N, Mitra, B, & De, P. (2018). Effectiveness of Deep Neural Network Model in typing-based emotion detection on smartphones. In Proceedings of the Annual International Conference on Mobile Computing and Networking (pp. 750–752). doi:10.1145/3241539.3267761