The von Neumann entropy plays a vital role in quantum information theory. As the Shannon entropydoes in classical information theory, the von Neumann entropy determines the capacities of quan-tum channels. Quantum entropies of composite quantum systems are important for future quantumnetwork communication their characterization is related to the so calledquantum marginal problem.Furthermore, they play a role in quantum thermodynamics. In this thesis the set of quantum entropiesof multipartite quantum systems is the main object of interest. The problem of characterizing this setis not new – however, progress has been sparse, indicating that the problem may be considered hardand that new methods might be needed. Here, a variety of different and complementary aprroachesare taken.First, I look at global properties. It is known that the von Neumann entropy region – just likeits classical counterpart – forms aconvex cone. I describe the symmetries of this cone and highlightgeometric similarities and differences to the classical entropy cone.In a different approach, I utilize thelocalgeometric properties ofextremal raysof a cone. I showthat quantum states whose entropy lies on such an extremal ray of the quantum entropy cone have avery simple structure.As the set of all quantum states is very complicated, I look at a simple subset calledstabilizerstates. I improve on previously known results by showing that under a technical condition on the localdimension, entropies of stabilizer states respect an additional class of information inequalities that isvalid for random variables from linear codes.In a last approach I find a representation-theoretic formulation of the classical marginal problemsimplifying the comparison with its quantum mechanical counterpart. This novel correspondenceyields a simplified formulation of the group characterization of classical entropies (IEEE Trans. Inf.Theory, 48(7):1992–1995, 2002) in purely combinatorial terms.