This is a set of lecture notes suitable for a Master's course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 2 chapters about complexity, 4 chapters about distributed ("Alice and Bob") settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.

arXiv.org e-Print archive
Quantum algorithms and applications
Algorithms and Complexity

de Wolf, R. (2019). Quantum Computing: Lecture Notes. arXiv.org e-Print archive.