Motivated by the increasing use of online appointment booking platforms, we study how to offer appointment slots to customers in order to maximize the total number of slots booked. We develop two models, non-sequential offering and sequential offering, to capture different types of interactions between customers and the scheduling system. In these two models, the scheduler offers either a single set of appointment slots for the arriving customer to choose from, or multiple sets in sequence, respectively. For the non-sequential model, we identify a static randomized policy which is asymptotically optimal when the system demand and capacity increase simultaneously, and we further show that offering all available slots at all times has a constant factor of 2 performance guarantee. For the sequential model, we derive a closed-form optimal policy for a large class of instances and develop a simple, effective heuristic for those instances without an explicit optimal policy. By comparing these two models, our study generates useful operational insights for improving the current appointment booking processes. In particular, our analysis reveals an interesting equivalence between the sequential offering model and the non-sequential offering model with perfect customer preference information. This equivalence allows us to apply sequential offering in a wide range of interactive scheduling contexts. Our extensive numerical study shows that sequential offering can significantly improve the slot fill rate (6-8% on average and up to 18% in our testing cases) compared to non-sequential offering.

Additional Metadata
Keywords Appointment scheduling, Asymptotically optimal policy, Customer choice, Markov decision process, Service operations management
Persistent URL dx.doi.org/10.1287/mnsc.2018.3150
Citation
Liu, N, van de Ven, P.M, & Zhang, B. (2016). Managing appointment booking under customer choices. doi:10.1287/mnsc.2018.3150