2019-06-28
Dynamical fidelity susceptibility of decoherence-free subspaces
Publication
Publication
Physical Review A: Atomic, Molecular and Optical Physics , Volume 99 - Issue 6 p. 062340:1- 062340:8
In idealized models of a quantum register and its environment, quantum information can be stored indefinitely by encoding it into a decoherence-free subspace (DFS). Nevertheless, perturbations to the idealized register-environment coupling will cause decoherence in any realistic setting. Expanding a measure for state preservation, the dynamical fidelity, in powers of the strength of the perturbations, we prove stability to linear order is a generic property of quantum state evolution. The effect of noise perturbation is quantified by a concise expression for the strength of the quadratic leading order, which we define as the dynamical fidelity susceptibility of DFSs. Under the physical restriction that noise acts on the register k-locally, this susceptibility is bounded from above by a polynomial in the system size. These general results are illustrated by two physically relevant examples. Knowledge of the susceptibility can be used to increase coherence times of future quantum computers.
| Additional Metadata | |
|---|---|
| doi.org/10.1103/PhysRevA.99.062340 | |
| Physical Review A: Atomic, Molecular and Optical Physics | |
|
Kattemölle, J., & van Wezel, J. (2019). Dynamical fidelity susceptibility of decoherence-free subspaces. Physical Review A: Atomic, Molecular and Optical Physics, 99(6), 062340:1–062340:8. doi:10.1103/PhysRevA.99.062340 |
|