2017-12-04
Random permutation online isotonic regression
Publication
Publication
Presented at the
Annual Conference on Advances in Neural Information Processing Systems (December 2017), Long Beach, California, USA
We revisit isotonic regression on linear orders, the problem of fitting monotonic functions to best explain the data, in an online setting. It was previously shown that online isotonic regression is unlearnable in a fully adversarial model, which lead to its study in the fixed design model. Here, we instead develop the more practical random permutation model. We show that the regret is bounded above by the excess leave-one-out loss for which we develop efficient algorithms and matching lower bounds. We also analyze the class of simple and popular forward algorithms and recommend where to look for algorithms for online isotonic regression on partial orders.
Additional Metadata | |
---|---|
Annual Conference on Advances in Neural Information Processing Systems | |
Organisation | Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands |
Kotłowski, W., Koolen-Wijkstra, W., & Malek, A. (2017). Random permutation online isotonic regression. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 4181–4190). |