2017-10-20
Sparse Bayesian Inference & Uncertainty Quantification for Inverse Imaging Problems
Publication
Publication
During the last two decades, sparsity has emerged as a key concept to solve linear and non-linear ill-posed inverse problems, in particular for severely ill-posed problems and applications with incomplete, sub-sampled data. At the same time, there is a growing demand to obtain quantitative instead of just qualitative inverse results together with a systematic assessment of their uncertainties (Uncertainty quantification, UQ). Bayesian inference seems like a suitable framework to combine sparsity and UQ but its application to large-scale inverse problems resulting from fine discretizations of PDE models leads to severe computational and conceptional challenges. In this talk, we will focus on two different Bayesian approaches to model sparsity as a-priori information: Via convex, but non-smooth prior energies such as total variation and Besov space priors and via non-convex but smooth priors arising from hierarchical Bayesian modeling. To illustrate our findings, we will rely on experimental data from challenging biomedical imaging applications such as EEG/MEG source localization and limited-angle CT. We want to share the experiences, results we obtained and the open questions we face from our perspective as researchers coming from a background in biomedical imaging rather than in statistics and hope to stimulate a fruitful discussion for both sides.
Additional Metadata | |
---|---|
Statistics for Structures | |
Organisation | Computational Imaging |
Lucka, F. (2017, October 20). Sparse Bayesian Inference & Uncertainty Quantification for Inverse Imaging Problems. |