Most multi-class classifiers make their prediction for a test sample by scoring the classes and selecting the one with the highest score. Analyzing these prediction scores is useful to understand the classifier behavior and to assess its reliability. We present an interactive visualization that facilitates per-class analysis of these scores. Our system, called Classilist, enables relating these scores to the classification correctness and to the underlying samples and their features. We illustrate how such analysis reveals varying behavior of different classifiers. Classilist is available for use online, along with source code, video tutorials, and plugins for R, RapidMiner, and KNIME at https://katehara.github.io/classilist-site/.

Bosch Research, Palo Alto, USA
doi.org/10.48550/arXiv.1711.06795
Symposium on Interpretable Machine Learning

Katehara, M., Beauxis-Aussalet, E., & Alsallakh, B. (2017). Prediction scores as a window into classifier behavior. In Advances in Neural Information Processing Systems. doi:10.48550/arXiv.1711.06795