Anatase nanosheets with exposed {001} facets have gained increasing interest for photocatalytic applications. To fully understand the structure-to-activity relation, combined experimental and computational methods have been exploited. Anatase nanosheets were prepared under hydrothermal conditions in the presence of fluorine ions. High resolution scanning transmission electron microscopy was used to fully characterize the synthesized material, confirming the TiO2 nanosheet morphology. Moreover, the surface structure and composition of a single nanosheet could be determined by annular bright-field scanning transmission electron microscopy (ABF-STEM) and STEM electron energy loss spectroscopy (STEM-EELS). The photocatalytic activity was tested for the decomposition of organic dyes rhodamine 6G and methyl orange and compared to a reference TiO2 anatase sample. The anatase nanosheets with exposed {001} facets revealed a significantly lower photocatalytic activity compared to the reference. In order to understand the mechanism for the catalytic performance, and to investigate the role of the presence of F-, light-induced electron paramagnetic resonance (EPR) experiments were performed. The EPR results are in agreement with TEM, proving the presence of Ti3+ species close to the surface of the sample and allowing the analysis of the photoinduced formation of paramagnetic species. Further, ab initio calculations of the anisotropic effective mass of electrons and electron holes in anatase show a very high effective mass of electrons in the [001] direction, having a negative impact on the mobility of electrons toward the {001} surface and thus the photocatalysis. Finally, motivated by the experimental results that indicate the presence of fluorine atoms at the surface, we performed ab initio calculations to determine the position of the band edges in anatase slabs with different terminations of the {001} surface. The presence of fluorine atoms near the surface is shown to strongly shift down the band edges, which indicates another reason why it can be expected that the prepared samples with a large amount of {001} surface, but with fluorine atoms near the surface, show only a low photocatalytic activity.
Journal of Physical Chemistry C
Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands

Kus, M., Altantzis, T., Vercauteren, S., Caretti, I., Leenaerts, O., Batenburg, J., … Cool, P. (2017). Mechanistic insight into the photocatalytic working of fluorinated anatase {001} nanosheets. Journal of Physical Chemistry C, 121(47), 26275–26286. doi:10.1021/acs.jpcc.7b05586