We present a new scheme for quantum homomorphic encryption which is compact and allows for efficient evaluation of arbitrary polynomial-sized quantum circuits. Building on the framework of Broadbent and Jeffery [BJ15] and recent results in the area of instantaneous non-local quantum computation [Spe15], we show how to construct quantum gadgets that allow perfect correction of the errors which occur during the homomorphic evaluation of T gates on encrypted quantum data. Our scheme can be based on any classical (leveled) fully homomorphic encryption (FHE) scheme and requires no computational assumptions besides those already used by the classical scheme. The size of our quantum gadget depends on the space complexity of the classical decryption function – which aligns well with the current efforts to minimize the complexity of the decryption function. Our scheme (or slight variants of it) offers a number of additional advantages such as ideal compactness, the ability to supply gadgets “on demand”, and circuit privacy for the evaluator against passive adversaries.

doi.org/10.1007/978-3-662-53015-3_1
Annual International Cryptology Conference
Algorithms and Complexity

Dulek, Y., Schaffner, C., & Speelman, F. (2016). Quantum homomorphic encryption for polynomial-sized circuits. Presented at the Annual Cryptology Conference. doi:10.1007/978-3-662-53015-3_1