Sensors are increasingly part of our daily lives: motion detection, lighting control, and energy consumption all rely on sensors. Combining this information into, for instance, simple and comprehensive graphs can be quite challenging. Dimensionality reduction is often used to address this problem, by decreasing the number of variables in the data and looking for shorter representations. However, dimensionality reduction is often aimed at normal daily data, and applying it to events deviating from this daily data (so-called outliers) can affect such events negatively. In particular, outliers might go unnoticed. In this paper, we show that dimensionality reduction can indeed have a large impact on outliers. To that end we apply three dimensionality reduction techniques to three real-world datasets, and inspect how well they preserve outliers. We use several performance measures to show how well these techniques are capable of preserving outliers, and we discuss the results.

Additional Metadata
Keywords Dimensionality reduction, F1-score, Matthews correlation, MDS, Multidimensional scaling, Outlier detection, Outlier preservation, PCA, Peeling, Principal component analysis, Relative information score, Sensor network, T-SNE, T-stochastic neighbourhood embedding
Persistent URL dx.doi.org/10.1504/IJDATS.2015.071365
Journal International Journal of Data Analysis Techniques and Strategies
Citation
Onderwater, M. (2015). Outlier preservation by dimensionality reduction Techniques. International Journal of Data Analysis Techniques and Strategies, 7(3), 231–252. doi:10.1504/IJDATS.2015.071365