2015-02-01
Stochastic Parameterization of Convective Area Fractions with a Multicloud Model Inferred from Observational Data
Publication
Publication
Journal of the Atmospheric Sciences , Volume 72 p. 854- 869
Observational data of rainfall from a rain radar in Darwin, Australia, are combined with data defining the
large-scale dynamic and thermodynamic state of the atmosphere around Darwin to develop a multicloud
model based on a stochastic method using conditional Markov chains. The authors assign the radar data to
clear sky, moderate congestus, strong congestus, deep convective, or stratiform clouds and estimate transition
probabilities used by Markov chains that switch between the cloud types and yield cloud-type area fractions.
Cross-correlation analysis shows that the mean vertical velocity is an important indicator of deep convection.
Further, it is shown that, if conditioned on the mean vertical velocity, the Markov chains produce fractions
comparable to the observations. The stochastic nature of the approach turns out to be essential for the correct
production of area fractions. The stochastic multicloud model can easily be coupled to existing moist convection
parameterization schemes used in general circulation models.
Additional Metadata | |
---|---|
, , , | |
American Meteorological Society | |
doi.org/10.1175/JAS-D-14-0110.1 | |
Journal of the Atmospheric Sciences | |
Influence of a new stochastic convection parameterization on cloud-climate feedbacks | |
Organisation | Scientific Computing |
Dorrestijn, J, Crommelin, D.T, Siebesma, A.P, Jonker, H.J.J, & Jakob, C. (2015). Stochastic Parameterization of Convective Area Fractions with a Multicloud Model Inferred from Observational Data. Journal of the Atmospheric Sciences, 72, 854–869. doi:10.1175/JAS-D-14-0110.1
|