2015-02-01
On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings
Publication
Publication
We investigate structural properties of the completely positive semidefinite cone
CS^n_+ , consisting of all the n×n symmetric matrices that admit a Gram representation
by positive semidefinite matrices of any size. This cone has been introduced to model
quantum graph parameters as conic optimization problems. Recently it has also
been used to characterize the set Q of bipartite quantum correlations, as projection
of an affine section of it. We have two main results concerning the structure of the
completely positive semidefinite cone, namely about its interior and about its closure.
On the one hand we construct a hierarchy of polyhedral cones which covers the interior
of CS^n_+ , which we use for computing some variants of the quantum chromatic number
by way of a linear program. On the other hand we give an explicit description of
the closure of the completely positive semidefinite cone, by showing that it consists
of all matrices admitting a Gram representation in the tracial ultraproduct of matrix
algebras.
Additional Metadata | |
---|---|
Cornell University Library | |
doi.org/10.4230/LIPIcs.TQC.2015.127 | |
arXiv.org e-Print archive | |
Approximation Algorithms, Quantum Information and Semidefinite Optimization | |
Organisation | Networks and Optimization |
Burgdorf, S., Laurent, M., & Piovesan, T. (2015). On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings. arXiv.org e-Print archive. Cornell University Library . doi:10.4230/LIPIcs.TQC.2015.127 |