2016-03-01
A functional central limit theorem for a Markov-modulated infinite-server queue
Publication
Publication
Methodology and Computing in Applied Probability , Volume 18 - Issue 1 p. 153- 168
We consider a model in which the production of new molecules in a chemical reaction network occurs in a seemingly stochastic fashion, and can be modeled as a Poisson process with a varying arrival rate: the rate is $\lambda_i$ when an external Markov process $J(\cdot)$ is in state $i$. It is assumed that molecules decay after an exponential time with mean $\mu^{-1}$. The goal of this work is to analyze the distributional properties of the number of molecules in the system, under a specific time-scaling. In this scaling, the background process is sped up by a factor $N^{\alpha}$, for some $\alpha>0$, whereas the arrival rates become $N\lambda_i$, for $N$ large. The main result of this paper is a functional central limit theorem ({\sc f-clt}) for the number of molecules, in that the number of molecules, after centering and scaling, converges to an Ornstein-Uhlenbeck process. An interesting dichotomy is observed: (i)~if $\alpha>1$ the background process jumps faster than the arrival process, and consequently the arrival process behaves essentially as a (homogeneous) Poisson process, so that the scaling in the {\sc f-clt} is the usual $\sqrt{N}$, whereas (ii)~for $\alpha\leq1$ the background process is relatively slow, and the scaling in the {\sc f-clt} is $N^{1-\alpha/2}.$ In the latter regime, the parameters of the limiting Ornstein-Uhlenbeck process contain the deviation matrix associated with the background process $J(\cdot)$.
Additional Metadata | |
---|---|
, , , | |
, , | |
doi.org/10.1007/s11009-014-9405-8 | |
Methodology and Computing in Applied Probability | |
Coarse grained stochastic methods for biochemical reactions | |
Organisation | Evolutionary Intelligence |
Anderson, D. F., Blom, J., Mandjes, M., Thorsdottir, H., & deTurck, K. E. E. S. (2016). A functional central limit theorem for a Markov-modulated infinite-server queue. Methodology and Computing in Applied Probability, 18(1), 153–168. doi:10.1007/s11009-014-9405-8 |
See Also |
---|