2013
Stochastic homogenization for an energy conserving multi-scale toy model of the atmosphere
Publication
Publication
Physica - D, Nonlinear Phenomena , Volume 254 p. 45- 56
We study a Hamiltonian toy model for a Lagrangian fluid parcel in the semi-geostrophic limit which exhibits slow and fast dynamics. We first reinject unresolved fast dynamics into the deterministic equation through a stochastic parametrization that respects the conservation of the energy of the deterministic system. In a second step we use stochastic singular perturbation theory to derive an effective reduced stochastic differential equation for the slow dynamics. We verify the results in numerical simulations.
| Additional Metadata | |
|---|---|
| , , | |
| Elsevier | |
| Physica - D, Nonlinear Phenomena | |
| Thermostat closures for inviscid fluids | |
| Organisation | Computational Dynamics |
|
Frank, J., & Gottwald, G. A. (2013). Stochastic homogenization for an energy conserving multi-scale toy model of the atmosphere. Physica - D, Nonlinear Phenomena, 254, 45–56. |
|