How does the brain learn to map multi-dimensional sensory inputs to multi-dimensional motor outputs when it can only observe single rewards for the coordinated outputs of the whole network of neurons that make up the brain? We introduce Multi-AGREL, a novel, biologically plausible multi-layer neural network model for multi-dimensional reinforcement learning. We demonstrate that Multi-AGREL can learn non-linear mappings from inputs to multi-dimensional outputs by using only scalar reward feedback. We further show that in Multi-AGREL, the changes in the connection weights follow the gradient that minimizes global prediction error, and that all information required for synaptic plasticity is locally present.
, ,
Springer Verlag
Teaching and Learning in Multi Agent Systems
International Conference on Artificial Neural Networks
Life Sciences and Health

Rombouts, J.O, van Ooyen, A, Roelfsema, P.R, & Bohte, S.M. (2012). Biologically plausible multi-dimensional reinforcement learning in neural networks. In Proceedings of International Conference on Artificial Neural Networks 2012 (ICANN 22) (pp. 443–450). Springer Verlag.