2012-05-01
Semidefinite code bounds based on quadruple distances
Publication
Publication
IEEE Transactions on Information Theory , Volume 58 - Issue 1005.4959 p. 2697- 2705
Let A(n, d) be the maximum number of 0, 1 words of length n, any two having Hamming distance at least d. We prove A(20, 8) = 256, which implies that the quadruply shortened Golay code is optimal. Moreover, we show A(18, 6) ≤ 673, A(19, 6) ≤ 1237, A(20, 6) ≤ 2279, A(23, 6) ≤ 13674, A(19, 8) ≤ 135, A(25, 8) ≤ 5421, A(26, 8) ≤ 9275, A(21, 10) ≤ 47, A(22, 10) ≤ 84, A(24, 10) ≤ 268, A(25, 10) ≤ 466, A(26, 10) ≤ 836, A(27, 10) ≤ 1585, A(25, 12) ≤ 55, and A(26, 12) ≤ 96. The method is based on the positive semidefiniteness of matrices derived from quadruples of words. This can be put as constraint in a semidefinite program, whose optimum value is an upper bound for A(n, d). The order of the matrices involved is huge. However, the semidefinite program is highly symmetric, by which its feasible region can be restricted to the algebra of matrices invariant under this symmetry. By block diagonalizing this algebra, the order of the matrices will be reduced so as to make the program solvable with semidefinite programming software in the above range of values of n and d.
Additional Metadata | |
---|---|
, , | |
I.E.E.E. | |
IEEE Transactions on Information Theory | |
Organisation | Networks and Optimization |
Gijswijt, D., Mittelmann, H. D., & Schrijver, L. (2012). Semidefinite code bounds based on quadruple distances. IEEE Transactions on Information Theory, 58(1005.4959), 2697–2705. |