Suppose that Alice and Bob make local two-outcome measurements on a shared entangled quantum state. We show that, for all positive integers d, there exist correlations that can only be reproduced if the local Hilbert-space dimension is at least d. This establishes that the amount of entanglement required to maximally violate a Bell inequality must depend on the number of measurement settings, not just the number of measurement outcomes. We prove this result by establishing a lower bound on a new generalization of Grothendieck’s constant.
, ,
,
Springer
Communications in Mathematical Physics
Quantum Information Processing
International Conference on Quantum Information Processing and Communication
Algorithms and Complexity

Briët, J., Buhrman, H., & Toner, B. (2011). A Generalized Grothendieck Inequality and Nonlocal Correlations that Require High Entanglement. Communications in Mathematical Physics, 305(3), 827–843.