Given a positive integer n and a positive semidefinite matrix A = (A_{ij}) of size m x m, the positive semidefinite Grothendieck problem with rank-n-constraint is (SDP_n) maximize \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i \cdot x_j, where x_1, >..., x_m \in S^{n-1}. In this paper we design a polynomial time approximation algorithm for SDP_n achieving an approximation ratio of \gamma(n) = \frac{2}{n}(\frac{\Gamma((n+1)/2)}{\Gamma(n/2)})^2 = 1 - \Theta(1/n). We show that under the assumption of the unique games conjecture the achieved approximation ratio is optimal: There is no polynomial time algorithm which approximates SDP_n with a ratio greater than \gamma(n). We improve the approximation ratio of the best known polynomial time algorithm for SDP_1 from 2/\pi to 2/(\pi\gamma(m)) = 2/\pi + \Theta(1/m), and we determine the optimal constant of the positive semidefinite case of a generalized Grothendieck inequality.
, , , ,
, ,
Springer
S. Abramsky , C. Gavoille , C. Kirchner (Claude) , F. Meyer auf der Heide , P.G. Spirakis (Paul)
International Colloquium on Automata, Languages and Programming
Algorithms and Complexity

Briët, J., de Oliveira Filho, F. M., & Vallentin, F. (2010). The positive semidefinite Grothendieck problem with rank constraint. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, & P. Spirakis (Eds.), Proceedings of Automata, Languages and Programming, International Colloquium 2010. Springer.