2009
Restricted set addition: The exceptional case of the Erdos-Heilbronn conjecture
Publication
Publication
Journal of Combinatorial Theory - Series A , Volume 116 - Issue 3 p. 741- 746
Let A,B be different nonempty subsets of the group of integers modulo a prime p. If p is not smaller than |A|+|B|-2, then at least this many residue classes can be represented as a+b, where a and b are different elements of A and B, respectively. This result complements the solution of a problem of Erdos and Heilbronn obtained by Alon, Nathanson, and Ruzsa.
Additional Metadata | |
---|---|
, , , | |
, | |
Academic Press | |
Journal of Combinatorial Theory - Series A | |
Spinoza prijs Lex Schrijver | |
Organisation | Networks and Optimization |
Karolyi, G. (2009). Restricted set addition: The exceptional case of the Erdos-Heilbronn conjecture. Journal of Combinatorial Theory - Series A, 116(3), 741–746. |