This thesis aims to extend some of the results of the Graph Minors Project of Robertson and Seymour to "group-labelled graphs". Let $\Gamma$ be a group. A $\Gamma$-labelled graph is an oriented graph with its edges labelled from $\Gamma$, and is thus a generalization of a signed graph. Our primary result is a generalization of the main result from Graph Minors XIII. For any finite abelian group $\Gamma$, and any fixed $\Gamma$-labelled graph $H$, we present a polynomial-time algorithm that determines if an input $\Gamma$-labelled graph $G$ has an $H$-minor. The correctness of our algorithm relies on much of the machinery developed throughout the graph minors papers. We therefore hope it can serve as a reasonable introduction to the subject. Remarkably, Robertson and Seymour also prove that for any sequence $G_1, G_2, \ldots$ of graphs, there exist indices $i < j$ such that $G_i$ is isomorphic to a minor of $G_j$. Geelen, Gerards and Whittle recently announced a proof of the analogous result for $\Gamma$-labelled graphs, for $\Gamma$ finite abelian. Together with the main result of this thesis, this implies that membership in any minor closed class of $\Gamma$-labelled graphs can be decided in polynomial-time. This also has some implications for well-quasi-ordering certain classes of matroids, which we discuss.

Additional Metadata
Keywords graph minors, matroids, groups, algorithms
Funder University of Waterloo
Thesis Advisor J. Geelen (Jim)
Series UWSpace
Citation
Huynh, T.C.T. (2009, September 24). The Linkage Problem for Group-labelled Graphs. UWSpace.