Social media systems have encouraged end user participation in the Internet, for the purpose of storing and distributing Internet content, sharing opinions and maintaining relationships. Collaborative tagging allows users to annotate the resulting user-generated content, and enables effective retrieval of otherwise uncategorised data. However, compared to professional web content production, collaborative tagging systems face the challenge that end-users assign tags in an uncontrolled manner, resulting in unsystematic and inconsistent metadata. This paper introduces a framework for the personalization of social media systems. We pinpoint three tasks that would benefit from personalization: collaborative tagging, collaborative browsing and collaborative search. We propose a ranking model for each task that integrates the individual user’s tagging history in the recommendation of tags and content, to align its suggestions to the individual user preferences. We demonstrate on two real data sets that for all three tasks, the personalized ranking should take into account both the user’s own preference and the opinion of others.
, , , ,
,
Pergamon
Information Processing & Management
Database Architectures

Wang, J., Clements, M., Yang, J., de Vries, A., & Reinders, M. J. T. (2010). Personalization of tagging systems . Information Processing & Management, 46(1), 58–70.