2008
Secant dimensions of low-dimensional homogeneous varieties
Publication
Publication
We completely describe the higher secant dimensions of all connected homogeneous projective varieties of dimension at most 3, in all possible equivariant embeddings. In particular, we calculate these dimensions for all Segre-Veronese embeddings of P^1 * P^1, P^1 * P^1 * P^1, and P^2 * P^1, as well as for the variety F of incident point-line pairs in P^2. For P^2 * P^1 and F the results are new, while the proofs for the other two varieties are more compact than existing proofs. Our main tool is the second author's tropical approach to secant dimensions.
Additional Metadata | |
---|---|
, , | |
, , | |
Cornell University Library | |
arXiv.org e-Print archive | |
Organisation | Networks and Optimization |
Baur, K., & Draisma, J. (2008). Secant dimensions of low-dimensional homogeneous varieties. arXiv.org e-Print archive. Cornell University Library . |
Additional Files | |
---|---|
Publisher Version |
See Also |
---|
techReport
|
techReport
|