2007
Empty convex polygons in almost convex sets
Publication
Publication
Periodica Mathematica Hungarica , Volume 55 - Issue 2 p. 121- 127
A finite set of points, in general position in the plane, is almost convex if every triple determines a triangle with at most one point in its interior. For every k>2, we determine the maximum size of an almost convex set that does not contain the vertex set of an empty convex k-gon.
Additional Metadata | |
---|---|
, , , | |
Akademiai Kiado | |
Periodica Mathematica Hungarica | |
Spinoza prijs Lex Schrijver | |
Organisation | Networks and Optimization |
Valtr, P., Lippner, G., & Karolyi, G. (2007). Empty convex polygons in almost convex sets. Periodica Mathematica Hungarica, 55(2), 121–127. |