2003
A probabilistic multimedia retrieval model and its evaluation
Publication
Publication
EURASIP Journal on Applied Signal Processing , Volume 2 p. 186- 198
In this paper we present a probabilistic model for the retrieval of multimodal documents. The model is based on Bayesian decision theory and combines models for text based search with models for visual search. The textual model is based on the language modelling approach to text retrieval and the visual information is modelled as a mixture of Gaussian densities. Both models have been proved successful on various standard retrieval tasks. We evaluate the multimodal model on the search task of TREC's video track. We found that the disclosure of video material based on visual information only is still too difficult. Even with purely visual information needs, text based retrieval still outperforms visual approaches. The probabilistic model is useful for text, visual and multimedia retrieval. Unfortunately, simplifying assumptions that reduce its computational complexity degrade retrieval effectiveness. Regarding the question whether the model can effectively combine information from different modalities, we conclude that whenever both modalities yield reasonable scores, a combined run outperforms the individual runs.
Additional Metadata | |
---|---|
Hindawi | |
EURASIP Journal on Applied Signal Processing | |
Organisation | Database Architectures |
Westerveld, T., de Vries, A., van Ballegooij, A., de Jong, F., & Hiemstra, D. (2003). A probabilistic multimedia retrieval model and its evaluation. EURASIP Journal on Applied Signal Processing, 2, 186–198. |