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Let X be a topological space, U a finite covering of X (NB the words 

'covering' and 'cover' are used interchangeably). We say that (x,U) has the 

almost fixed point property for a class 'f of continuous maps f: X ➔ X 

if for all f E o/ there is an x EX and U EU such that x EU and 

f(x) EU, or, equivalently, if there is a U EU such that Un f(U) 1 ~ 
For example if Xis the euclidean plane and U a finite open covering 

by convex sets then (X, U ) has the almost fixed point property for all 

continuous maps. Cf. De Groot, De Vries, Van der Walt [2]. Other examples 

of al.most fixed point theorems can be found in Klee [7], Halpern [6] and 

Gray, Vaughan [5]. 

It is fairly natural to restrict attention to finite coverings of X. 

Indeed if a space Xis such that (X, U ) has the al.most fixed point property 

for all open coverings U, then X has the fixed point property. It is also 

fairly natural to concentrate somewhat on noncompact spaces X because if 

a compact space Xis such that (X, U ) has the almost fixed point property 

for all (or a cofinal set of) finite coverings U then X has the fixed 

point property. 

There is an extension of this result. Let X be a T1-space and f:X ➔ X 

a continuous map. Let w(X) be the Wall.man compactification of X. There is 

an induced continuous map w(f): w(X) + w(X). The following two statements 

are then equivalent: (i) w(f) has a fixed point; (ii) for every finite open 
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covering U of X there is a U E U such that U n f(U) 'f <fl· This follows 

from the fact that there is a one-one correspondence between finite 

coverings of X and finite coverings of w(X). 

In this paper we develop what Thompson (11] calls an indirect 

theory. A main result 1s a Lefshetz-type almost fixed point theorem. 

We first define a certain kind of finite coverings called geometric 

coverings. The result then is: let X be a space with a closed 

0eometric covering t and let f: X -+ X. Then L(f) = 0 or for every 

finite open coverU which is refined by L there is a U EU such 

that Un f(U) I¢, Here L(f), the Lefshetz number, is defined in terms 
• V 

or compactly generated Cech homology. 

The next step is then to find at least some examples of geometric 

coverings. In this direction we have e.g. the followinp.: results: 

(i) A compact space X admits a weak semicomplex structure 

(cf. Thompson (10] for this notion) if and only if every 

finite open covering is geometric. (Spaces which admit a WSC 

structure include all compact polyhedra). 

(ii) If Xis a not necessarily compa~t normal space and t 1s a finite 

closed convexoid covering which admits a finite open refinement 

then tis geometric. Cf. 8.4. 

Thia last result, the Lefshetz-type almost fixed point theorem, 

and a result on the existence of finite closed convex refinements 

of finite open convex coverings of euclidean spaces then combine 

to give a proof of the following almost fixed point theorem, 

conjectured by De Groot, cf. [2]. 

Let Ube a finite open convex covering of Rn, f Rn-+ ~n 

continuous, then there is a U EU such that Un f(U) I¢. 
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2. COMPACTLY GENERATED CECH HOMOLOGY 

In this section we introduce some notation and give a short outline 

of the definitions of the (compactly generated) Cech homology groups. 

For more details cf e ·S· Eilenbers Steenrod U] and Spanier [9]. 

2.1. Some Notations and Conventions 

If Xis a topological space thencov~X) denotes the set of all 

of X. All coverings occurring in this paper finite open coverings 

(open or not) will be 

is a subset then n c-'f = 

finite. If t is a finite covering of X and J c C 
A. 

A simplicial complex will be an abstract simplicial complex. All 

simplicial complexes will be finite. If S is a simplicial complex then 

Sn denotes its n-skeleton, ~Sis the chain complex with coefficients 

in Q associated to Sand ~(S) is the k-th homology group of /:J.S. The 

symbol I denotes the simplicial complex with two vertices e0 ,eJ and one 

1-simplex {e0 ,e 1}. If Sand s 1 are two simplicial complexes then S x s1 

is their cartesian product. The vertices of S x I are pairs (a,ei) 

where a is a vertex of S, i = 0,1; we write ai for (a,e.), i = 0,1. With 
. 1 

this notation the simplices of S x I can be described as follows: 

let a 1 , .•• , as be an ordening of the vertices of S. Then a simplex of 
o o 1 1 S x I is of the form {a. , ..• ,a. , a. , ... ,a. } where 
1 1 1 r 1 r+1 1 k 

i 1 < ••• < ir S ir+l < ••• < ik. 

Let U € covf(X), Ka subspace of X; with Uj·K we denote the set 

of subsets of K of the form U n K, U E U , and C(K, U ) stands for 

. the simplicial complex which is the nerve of 'U I· K; i.e. a typical 

simplex of C(K, U ) is a subset o = {U. , ..• ,U. } of U such that 
11 in 

U. n ... n u. n K, ~-Then-skeleton of C(K, 'U., ) is denoted Cn(K, U ) 
an11 1 

d the k-th~omology group of /:J. C(K, U ) is denoted Hk( U I K); 

if K = X we sometimes write Hk ( U ) or I\ (X, U. ) for I\ ( U I X) and .,, ,, 
C ( U ) for C ( X, it ) . 

Let o be a simplex of C(K, U ) , U E covf (X), K c X. Then the 

support of cr 1 supp(cr), is defined as U Un Kand the reduced support of o as 
UE"cr ' 
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rsupp(o) = n Un K. A chain c E 6 C(K, U) is said to be on a subspace 

Ac K if c ~~0 in the subchain complex 6C(A, U, ) c L:iC(K, U ) or, equivalently, 

if rsupp(o) n A~¢ for all o occurring inc (i.e. having nonzero 

coefficient in c). 

V 
2.2. Cech Homology of Compact Spaces. 

Let K be a compact space, K' a closed (compact) subspace of K. Let 

11.9- ' E covf (K') and 1f E covf (K) then we say that V-' refines V- and 

write V' < '-1,9- if for every V' E V-' there is a V E V- such that 

V' c V. Choosing such a V for every V' E ift- 1 defines a map of simplicial 
V f ,dl 

complexes C(K', 'V-') ➔ C(K, v) and a homomorphism of chain complexes 

6C(K', V-') ➔ L:i~(K, 'V' ) and induces a homomorphism ¾_( V, ') -+ Hk( V-). 

All these maps are called refinement maps. There is usually more than 
y V 

one refinement map C(K', l)}- 1 ) ➔ C(K, V-) but they are all homotopic and 

hence induce the same homomorphism ~ ( V-') -+ Hk ( V ) . 

Applying this with K' = K and letting t,,9- run through covf(K2 

we obtain a projective system of groups and homomorphisms,Hk(K,-), 

indexed by covf(K). The k-th Cech homology group of K is now defined as 
.., 

lim Hk(K,-). The canonical projection Hk(K) ➔ Hk(tl} is denoted 
+ 

Let f: K1 -+ K2 be a continuous map of compact spaces. Every 

U E f(K ) . . -l U U E f( ) 2 cov 2 then gives rise to a f · 2 = 1 cov K1 , 

f-1( U 2 ) = {f- 1u2 1u2 E U2 }. Assigning to a vertex f- 1u2 the vertex 

u2 defines a map of simplicial complexes C(K 1 ,U 1)-+ C(K2 ,U2 ) and 

induces a homomorphism Hk ( f) : Hk ( U 1) -+ Hk ( 't/, 2 ). Letting U2 run 

through covf(K2 ) we obtain a homomorphism of projective systems 

Hk(f): ~(K1,-)-+ Hk(K2 ,-) which in turn gives rise to a homomorphism 

" .., " Hk(f): Hk(K1 ) ➔ Hk(K2 ). 

Note that we have a commutative diagram 

Hk(f) 

(2.2.1) 
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whenever U1 refines f- 1·U 2 (where the lower horizontal homomorphism 1n 

the composite of a refinement map Hk(K 1 ,U 1 )-+ Hk(K 1,f- 1Z,t 2 ) and 

Hk ( f): Hk ( K 1 , f-
1u 2 ) + Hk ( K2, u2) . 

I 

The Cech homology theory on compact spaces (or more generally 

compact pairs) satisfies all the usual homology axioms, c£ Eilenberg 

Steenrod [ 3] . 
v 

2.3. Compactly Generated Cech Homology 

Now let X be a not necessarily compact topological space. We could 

of course again write down the definitions of 2.2 and thus define 
v 
Cech homology groups of X based on finite covers. However, this 

homology theory does not satisfy the homotopy axiom (e.g. the Cech 

homology based on finite covers of~ is not trivial). Instead we take 

compactly generated Cech homology, also called Cech homology with compact 

supports, which is defined as follows. 

Let r be a cofinal collection of compact subsets of X, i.e. for 

every compact Kc X, there is a K' Er such that Kc K'. For each KE r, 
write down Hk(K): if K1 c K2 , K1 , K2 Er we have an induced homomorphism 

Hk(K 1 )-+ Hk(K2 ) giving us an injective system of homology groups indexed 

by r. We now define Hk(X) = lim Hk(K). This definition does not depend 

Kt:f 

on r. If f: X-+ Y is a continuous map then for every Kc X, K compact 

we have that f(K) c Y is compact and hence we have an induced map 

Hk(K)-+ Hk(fK) and this gives us a homomorphism of inductive systems and, 
v ~ ~ 

taking the limit, an induced homomorphism Hk(f): Hk(X)-+ Hk(Y). 

For compact spaces X these definitions agree with the ones from 2.2. 

Let U E covf(X), i.e. U is a finite open cover of the (not 

necessarily compact) space X. Then there is a natural homomorphism 

q:: Hk(X)-+ Hk(U.) which is defined as follows. Let z € Hk(X), then 

there 1s a compact Kand a z' E Hk(K) such that z' is mapped onto z 

under the natural homomorphism Hk(K) + Hk(X). Enlarging Kif necessary 

,; ~ . X K ) 
we can assume that C(K,'Li) = C(X,U). We now define ¾(z) = ¾(z'. 

This does not depend on K. 
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Let f: X -+ Y be a continuous map, 1'- E covf ( Y) , U E covf ( X) and 

suppose that U ~ f- 1v, then we have a commutative diagram 

where the lower horizontal homomorphism is defined in the obvious way. 

2.4. Reduced Homology Groups. 

The chain complexes 6C(K,U) carry a natural augmentation. The 

homology groups of the augmented complex are the reduced homology 

groups denoted ~ (K,U). Replacing ~ (K, 'U.) with Iik (K, U.) everywhere 
~ v~ v~ 

in 2.2 and 2.3 then defines reduced Cech homology groups ~(X), Hk(~) 

2.5. Lefshetz Theorem. 

Let X be a compact space, 'U E covf (X). Then there 1s a 

1" E covf (X) which refines U. such that 

Im(H(X)-+ H('l.L)) = Im(H("") -+H('U.)) 

This follows directly from the fact that the H(ll) are fin:: te 

dimensional vector spaces over~-

The same result holds for reduced homology (for the same reason). 
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3. GEOMETRIC COVERS. 

In this section we define and discuss the main technical tool 

of this paper, the notion of what we like to call a geometric cover. 

3.1. Definition of Geometric Covers. 

Let X be a topological space. A finite (not necessarily open) 

cover L of Xis geometric in dimension< n with respect to compactly 

generated ~ech homology if there exist 

(i) a cofinal collection r of compact subsets of X 

(ii) a map y : r + r such that 

(3.1.1) K C y(K) for all KE r 

(iii) a finite open refinement U.' of L 
(iv) for every KE r and 1.t E covf(yK) such that t'"::_ U' 

an augmentation preserving chain map 'V- : !:,Cn+l (K, U') -+ t:,C( yK, 1'-) 

such that the following conditions are satisfied 

f 
(3.1.2) (Factorization property). If k ::_ n, KE r, '\J" E cov (yK), 

(3.1.3) 

V- ::_ U ' , then there is a 'U-' E covf ( K), t"' ::_ V such that the 

following diagram commutes (where the two unlabelled arrows 

are induced by refinement maps). 

£ 
(Compatibility property). If k ::_ n, KE r, V- 1, V-2 E cov(yK), 

<V' 1 .2. V- 2 ::_ U' than the following diagram coI!lillutes 

1 
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.(3.1.4) (Norm condition). For every 'V-and :for every er€ Cn+l(K,1.L'} 

there is a C € t such that rsupp(o} c C n· K and ,,,.(o) is on 

C n yK; Le. rs~pp(o'} n c· n yK,;. cf, for all o' occurring in 

,,,_( 0) • 

In the sequel we shall use n-geometric as an abbreviation for geometric 

in dimensions~ n with respect to compactly generated 6ech homology. 

A f'inite cover C is geometric if there exists a f'inite open refinement 

U. ' € covf ( X) of' "C such that there are for every n € N a co final 

collection of' compact sets r , a map y : r + r , and f'or every K € r n n n n n n 

and 1'-E covf(y K ), V-< U 'chain maps,}~\ t.Cn+ 1(K ,U') + bC{-y K ,t,-) 
nn - v n nn 

such that (3.1.1) - (3.1.4) hold. Note that U.' is not al-lowed to depend 

on n (but that everything else may depend on n}. 

Examples of geometric covers are all finite open covers of compact 

spaces which admit a weak semicomplex structure, cf. 3.2 and 3.3 below. 

If' X is a not necessarily comp~ce and t is a finite closed 

c6nvexoid cover which has a f'inite open . refinement then t is 

geometric, cf. 8.4. 
As in the case of wealt semicomplexes the existence of geometric 

covers is closely related to various forms of local acyclicity(or local 

connectedness} of the space X, Cf. 4.5 and sections 7 and 8. 
Let t be an n-geometric (or· geometric} cover of a space X; Then 

Ut ( t) denotes the collection of all covers U' of' X refining t such 

that there exist corresponding r, y, 'v- satisfying the conditions listed 

above. 

Note that u· € ot(t) and 1.c.'1 € covf (X), U" ~ u· .. U 11 € Ol(t) and 

1f € ot( t) , C ~ t' • 'li € ~( t' ) , i.e. every cover of X refined by an 

n-geometric one is itself n-geometric. 

3.2. Weak Semicomplex Structures (Thompson · (10 ]) 

Let X be a compact space. A weak semicomplex structure (WSC) on X 

consists of 

(i) f'or every U € covf(X) a cofinal subset O(U) c covf(X) with a 

coarsest element a.(,l) € n(U. ), a( 'U) ~ U 
(ii) for every ~, 'W' € n( U ) , V < 1,J- an augmentation preserving chain 

map c ~: bC(X, W) + t,.~(X, V) such that the following conditions 

are satisfied 
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( 3. 2. 1 ) If V-" ,:.. V' ,:.. V in n( U ) then the following diagrams are 

commutative up to homotopy (where the unlabelled arrows are 

refinement maps) 

l:IC(X, lt") 

·l>' 
(3.2.2) For each 'llE n(U), c.v- induces an idempotent homomorphism 

H(V-) + H(1") of which the image coincides with the image of 
~ . 

H ( X) in H ( t9- ) ( under the natural map ) 

(3.2.3) If ·]t < W in n(U) then the chain map c~ satisfies the following 

norm condition: For every c1:;J t.C(X, W) + l:IC(X, V-) and 

every simplex a E C(X, W) there exists a U E U such that 
w-

supp ( cr) c U and supp ( c V" (a) ) c U. 

3.3. Theorem. 

Let X be a compact space which admits a WSC structure. Then every 

finite open e-over of Xis geometric. 

Proof. Let U. E covf (X). Take U' = a( U.), cf 3 .2 above. We take 
~ f . 

r = {X}, and define 'V-: C(X, U.') + Li.C(X,V-) for every ·ttE cov (X) 

refining U' as follows: 

if ·V- E n( U) take 'tr = c~ 

if 1' ¢ n ( 1L) let 'I.'-' E n( U ) be a refinement of V- and define ',V. 
. U' . . " ." as the composite of cv,, with the refinement map Li.C(X, V-') + l:IC(X, V-) 

This definition does .not depend on V-' (up to homotopy) because 

of (3.2.1) (second diagram). 

We ch :':ck the various axioms., ( 3. 1 . 1 ) is automatic and ( 3. 1 . 3) and 

(3.1.4) follow f.com respectively (3.2.1) (second diagram and (3.2.3). 

It remains to prove the factorization condition. Again it suffices to do 

this for 'lt E rl( U). Let V-' 2. V- be such that the image of H( 11' 1 ) in H( !J.,") 

is equal to the image of H(X) in H(V-). Such a~' E covf(X) exists 

by the Lefshetz theorem 2.5. We have a diagram 
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and this diagram is commutative up to homotopy. Now according to (3.2.2) 

c 1* is idempotent with as image the image of H(X) in H( V-). 

It follows that c 1* n1* = n1*. And hence we have 

n 1* = c 1*n 1* = c2*n2*nl* = c 2*n3* which proves the factorization. 

Inversely we have 

3.4. Theorem. 

Let X be a compact space and suppose that every open covering of Xis 

geometric. Then X admits a WSC structure. 

Proof. Let U E covf ( X) , let U be a starrefinement of U. . The cover U is 
0 0 

geometric by hypothesis; 

rl(U ) = { V- E covf(x)j 
0 

let U' E OL( U). We take a.(1.L ) = 'll' and 
0 

1J- _:::_ U '}. Let r, y, ''I>- be the other structure 

elements which make U a geometric cover. Taking X =KE r we have 

augmentation preserving chain maps 

T vi-- : ~ ( u ' ) + !,C ( v- ) 

for all '1f E rl( U ) satisfying (3.1.2) - (3.1.4). For V-_:::_ W < U. 1 

0 

we define the inverse projections c;- : C(W) + t,C( ·l)I-) as the composite 

of a refinement map t(W) + C( U') with 'v: C( U') + .6C(Jj!,)_ It is now 

not difficult to check the co~utativity up to homotopy of the diagrams 

( 3. 2, 1 ), Indeed if 1'3 ,(. ·l] 2 ~ tJ 1 ,£ U' we have the diagrams· 
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where the unlabelled arrows are refinement maps. The triangles 

1, 2, 3, 4, 5, 6 are commutative up to homotopy because of 

respectively: triangle of refinement maps, definition c, definition c, 

definition c; definition c, compatibility. The outer triangles are 

therefore commutative which is what we needed to prove. 

We now check the norm condition. Let 17 ~ ],,,J , C: i\C(W) ➔ L'iC('lf) the 

inverse projection. The map c is defined as the composite of a 
.., " ., 

refinement map 1r: t.C('W') ➔ i\C( 'U') and 11'-: /lC(U') + /lC('I>'-). Let a 
., " be a simplex of LiC(l,J), then 1ro is a simplex of L'iC(U'). Hence because 

of the norm condition (3.1.4) there is a U EU such that 

rsupp( no) c U and T (1r a) is on U 

Because U is a starrefinement of U 
0 

cU 
0 

and 

this implies that there is 

supp(,Tia) cU and because 1T 
0 

U0 E U 0 such that supp(TTo) 

is a refinement map supp(TTa) cU 
0 

implies supp(a) c:U0 • 

The last condition we have to check is (3.2.2). The chain 

" " homomorphism c: tiC ( V-) -► IJ.C ( 'If) is defined as T1T. 

According to the factorization axiom 

there is a lr .:'.:. V- such that the outer 

edge triangle of the following 

diagram commutes up to homotopy. 

It follows that cir' == rr". This holds 

for all fine enough 1'"'. Hence H(c) 

maps the image of H(X) in H(1') identically onto itself. 

Further the various 't'. define ( because of ( 3. 1 . 3) a map of projective 
" V '\., ,; \I 

systems HC(U.') ➔ HC(X,-) and hence a homomorphism T*: HC(U') + H(X). 
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~ ~ 

We then have~'*= T*. Now c* = T*TI* = ~~T*TI* which proves that c* maps 

H(lr) into the image of H(X) in H(V-). This concludes the proof of the 

theorem. 

3. 5 . Remark. 

Theorems 3.3 and 3.4 show that the compact spaces which admit a. 

WSC structure are precisely the compact spaces for which every finite 

open covering is geometric. This also shows, we feel, that the property 

"admits a WSC structure" is rather more natural than is maybe apparent 

from Thompson's original definition. Especially if we notice (cf. 4.4) 
that conditions ( 3. 1. 2) and ( 3. 1. 3) really say that the H(-r V- ) define 

a homomorphism of projective systems H( U') + HC(X,-) such that the 

composed map HC(X,-) + H( U') + HC(X,-) is the identity homomorphism 

(between projective systems), where the projective systems are indexed 

by the set of open coverings finer than 'U'. 

Spaces which admit WSC structures include compact polyhedra or more 

* generally Lefshetz's HLC spaces (cf. Lefshetz [14]) and finite unions of 

compact convex subsets of locally convex topological vector spaces 

(cf. Thompson [15]). 

3.6. Compactly Generated Lebesgue Covering Dimension. 

Let K be a compact space. We say that K has Lebesque covering 

dimension .:_ n if for every 'U E covf (K) there is a 'V-E covf ( K), ·1' .:_ U such 

;that dim( C(K, 1')) < n. 

Now let X be a not necessarily compact space. Then.we say that X 

has compactly generated Lebesque covering dimension.:_ n if every compact 

subspace K of X has Lebesque covering dimension< n. We simply write 

dim X < n. 

3.7. Proposition. 

If dim X .::_ n, then every n-geow~tric cover is geometric. 

Proof. Let t be a geometric cover and U' E ct( t). (Note that dimC(X, 'U') 
may well be larger than n and it may not be possible to repair this by 

taking a refinement of U'). Let r, y, T,v- be the corresponding structure 

elements. 
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If' -Jr E: covf ( yK) refines 'LL' and dim V.:::.. n, then the chain map 

TU' can be extended to a chain map \,-: .t.C(K, tC) ➔ tic( yK, '\t) by 

taking i'-i, ( o) = 0 if dim o > n+1. If 'I)- E: covf ( yK) is any covering 

refining U' choose a t,·' refining such that dim V,' .:::. n, and define 
~ ~ 

T1.5- a.s the composite of TV' and a refinement map. One easily checks 

that the i''l)- satisfy (3.1.1) - (3.1 .4). 

4. CONSEQUENCES OF THE EXISTENCE OF GEOMETRIC COVERS 

The existence of geometric covers has strong consequences for the 

homology and local acyclicity of a space. 

Let L be an n-geometric cover of the space X. Then the natural 

map ~ (X) + Hk ( U') is monomorphic for all k < n and U' E 01,,( t,). 

Consequently Hk(X) is finitely generated for all k < n. 

Proof. Let 'U.,1 EOl('C) and let T ' 
r, y be such that the conditions 

(J.1.1) and (3.1.2) of 3. 1 are satisfied. Let K E r' 1'< U'. Then 

according to (3.1.2) there exists a 1.r' 
f 

E COV (K)' V-' 2. V' such that 

following diagram commutes for all k < n. 

Now consider the following diagram (where the unlabelled arrows are 

induced by refinement maps and 1: K + yK is the natural inclusion 

) 

the 
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The leftmost triangle and the square are commutative by the definition 

of Cech homology groups, cf. 2.2; the lower triangle 1s commutative 

be::ause of ( 3. 1 . 2). It follows that the whole diagram is comrnutati ve. 

We now have for all z E Hk(K) 

{ I ·1 1 ) \ L+ • • 

Indeed if q~, !K (z) = 0 then q~1Stk(i)(z) = 0 for 

refining u,'jyK. It follows that Hk(i)(z) = O. 

Now let z E 1\'- (X) and suppose that q 'll' ( z) 

f all '/J E cov (yK) 

= 0. Since r is cofinal 

there 1.s a KE r such that z comes from K, i.e. K is such that 

z E 

that 

1\,.(K) 

C(K,U,') 

+ ~(X)). Taking a larger K E r if necessary we can assume 

= C(X, U') (i.e. if u1 n ... n U -:/- cp, u. EU', then 
r K 1 _ 

u1 n ... n Urn K-:/ ~). It follows (cf. 2.3) that qKl'U.'(z) = o for 

all z E Hk(K) mapping onto z E ~(X) and hence that z = 0 because 

of ( 4. 1 . 1 ) . 

4.2. Corollary. 

If t is a geometric cover of a space X then H*(X) 1s finitely 

generated. In particular Hk(X) = 0 fork large enough. 

4.3. Remarks. 

The !!uniformity" of U.' with respect to K E r and dimension n 1s 

essential for these results. 

Note that properties ( 3. 1. 3) and ( 3. 1. l-+) of a geometric cover 

have not been used. 

li. l+. Remark. 

Pripcrty (3.1.3) says that the maps Hk(\,) define a morphism of 

and property (3.1.2) then says that the composition 

is the natural homomorphism of' proobjects induced by the inclusion 
K "-+ yK. 
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It follows that the composed homomorphism 

1s the identity for K large enough. (The last map is induced by 

the inclusion yK ➔ X). Indeed, because Hk(X) is finitely generated 

there is a compact set K such that the natural map il{: Hk(K) ➔ ~(X) 

is surjective. 

Let x E ~(X), x' E ~(K) such that iK(x') = x. Then because 

q(x) = qU 1 (x 1 ) (cf. 2.3) and (4.4.1) above we have 

iyKT*q(x) = iyK'*q~ 1 (x 1 ) = x. 

NB The homomorphism i "'* may depend on K. 
YK 

4.5. Proposition. 

Let l: be an n-geometric cover of a space X and let U' E l7t ( I: ) . Then 

J\( U') ➔ f((x) is the zero map for all U' E U 1 , k = O, 1, ... , n. 

Proof. Let U' E U, 1 and let Kc U' be compact. We have to show that 

there exists a K' c X such that the inclusion K + K' induces the zero 

map on reduced homology. Take K' = yK. 

Because Kc U' we have 'U' j K 2-_ {K} ~ 1,C IK and hence H('U.' 11<) = 0. 

But from the proof of theorem (4.1) we have 

The same holds for reduced homology. (By using the Lefshetz theorem 

for reduced homology). This proves the proposition. 
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5. GEOMETRIC COVERS AND ALMOST FIXED POINTS 

We are now in a position to state and prove a Lefshetz type almost 

fixed point theorem 

5. 1. Lefshetz Nrnmber. 
V 

If Xis a space such that H,.,(X) is finitely generated and f: X ➔ X 

is continuous we define L(f) = E(-1}kTr(Hk(f1) where Tr(g) denotes 

the trace of a linear map g between (finite dimensionall vector spaces 

5.2. Lemma. 

Lett be a finite closed covering of a space X and let Ube a 

finite open covering of X such that L < U For each CE 't 
choose UC EU such that Cc UC. Then there exists a finite open 

covering U' of X such that U' E 'll' and U' n C f: <fl imply U' c UC. 

Proof. For each partition t = <J4 U 13 of 't into two disjoint 

parts we define the open set 

Take for U.' the covering consisting of the nonempty U' c:.+ , r3 . 
( U.' is a covering because 

xEU',.,t '11 with '/3 ={CEtlxEC},c,f ={CE°elx¢c}}. 
""x' '"x x x 
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5.3. Theorem. 

Let X be a space with a geometric covering t, and let 

f: X + X be continuous. Then for every finite open covering U:::_L 
we have t (f) :f:. 0 ~ 3U E'U,. such that U n f(U) ,j:. <P. 

Proof. t is a geometric cover. Let U ~ t . For each C E t 
choose UC E U such that C c UC. Now choose U' E ot (t) s.uch 

that U' E U' and U' n C -:/:- <P imply U' c UC. Such a U' can be 

found by 5 .2, and because any refinement of a cover in ot(t) 

1.s also in Ot(C). Cf. 3. 1. Let n = dim C(X, U.'). The cover t 
1.s n-geometric. Let r, y, T1' be the other structure elements 

corresponding to k' which go into the definition of an 

n-geometric covering. 

Assume that U n f(U) = cf> for all U E U . We are going 

to prove that L(f) = 0. Let K be comp~ct such that C(K, U') = ~( U') 

and such that H(K) + H(X) is surjective. Let K' ~ yK be such 

that f(y K) c· K'. Let 1" be a finite open covering of yK such that 

V- .::_ 'U' and such that for each V E ·1" there 1.s a U' E U' such 

that f(V) c U'. (This can be done because yK 1.s compact). Then 

we have an induced chain map 

r. : c ( 1') + c( u.') = c( u' ,K') 

and composing this with T : ~(U') + ~C(,,.) we obtain an induced 
'\J' 

chain map 

On the other hand we have a map of proobjects (cf. 4.4) 

T!k. Hkt'l.J. 1 1 K) + Hk(yK,-) and a by f induced homomorphism 

fr~ Hk(yK,-) + Hk(Ki-). Composing this and taking the projective 

limit gives a homomorphism 



Composing this with the natural map ~(K') ➔ Hk(X) gives us a 

map 

Now consider the following diagram 

Hk(x) 
f "'k. 

Hk(X) 

~k~ * ✓ fyK 
; 

Hk(yK) *k Hk (K') 

(5,3,1) 

i ··1/ jL>) 
* q 

* q 
q 

.~ 1 //4(, ) 
H(U') k 1'" ~( U') k 

~( f ·~ ) 

18 

The starred triangles and quadrangles are commutative and by (4.4) 

we have that iyk'!k q = id (left most triangle). Retaining only 

what we need~ we find a diagram 

" ~(X) 

q q 
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We have q g*k = Hk(r •• ) and f*L*k = g*k" Hence g*kq = f*T*kq = f* 

and q_f * = l\_ ( f •• ) q. 
V 

It follows that ~(f. 0 )(Hk(U 1 )) c:Hk(X) c:Hk(U'), where 
V 
Hk(X) is seen as a subvectorspace of ~(U') by means of the 

injection qU' (with inverse projection T*k' cf 4.4). And from this 

it follows that 

(5.3.2) for all k 

( 4) V 'I ',o Now by 3. 1. there is for every a E C( 'U. K} an element C E 1.., 

such that 

rsupfi(o) c C and rsupp(o') n Cf: cp for all o' in -c 77(o) 

It follows that (because U' E 1,t' and U' n C-/= ¢ imply U' c UC) 

supp(a) c: UC and supp(o') c: UC for all o' in Tt?--(o) 

But UC n f(UC) = ¢ • Hence a does not occur with nonzero coefficient 

inf T.Jo) = f (a). Hence Tr(f )k = 0. 
• ·v •~ ~c 

And by the Hopf theorem and (5.3.2) we then have 

5.4. Remark. This proof is quite similar in spirit to the pr.oafs of 

various other Lefshetz type fixed point theorem. Cf. eg. Thompson (10]. 

5. 5. Addendum. 

It is possible to extend theorem (5.2). A closed continuous 

surjective map f: Y +Xis called a Vietoris map if the subspace 
-1r , " f ,x) is homologically trivial (with respect to H) for all x EX. 

The extended version of theorem (5.2) then reads 
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Theorem. Let X be a normal space and t a closed geometric cover of X. 

Let Y be a topological space and f,g: Y ➔ X two continuous maps of which 

f is a Vietoris map, then if L(f,g) ~ O then for every finite open cover 

U.:.. t there is any E Y and U EU such that f(y) EU, g(y) EU. 

Here L(f,g) is defined as L(f,g) = E(-1 )kTr(~(g)~(:f)-1 ) which 

makes sense because the Vietoris map f induces isomorphisms on the 

homology groups. 

This theorem allows one to deal with multifunctions F: X ➔ X 

and gives as a corollary an Eilenberg-Montgomery type (cf. [4]) 

fixed point theorem by taking X compact (Cf. the introduction). 

The chief technical difficulty in proving this theorem (as 
. ., 1 

compared to theorem 5.2) lies in the obtaining of Hk(f)- as ~ of a. 

suitably controlled chain map. 

These things are to appear in Van der Vel (12]. 

6. LOCAL CONNECTEDNESS 

As in the case of e.g. WSC structures (cf. Thompson (10 J and [11 ]) 

some kind of local n-connectedness (with respect to H) is related to the 

existence of n-geometric covers. This and the following sections are 

concerned.with this connection. 

6.1. (Partial) Realizations. 

Let s 1 c S be a pair of simplicial complexes; s1 is said to be 

dense in S if S~, the zero skeleton of s1 , is equal to s0 • 

Let 1,J be a finite (open) cover of a space X. A partial realization 

of .§_ in 1-11' is an augmentation preserving chain map 

where s 1 is dense subcomplex of S. If s 1 = S we speak of a (full) 

realization. 

If o is a simplex of S, then S(a) denotes the subcomplex of S consisting 

of all faces of a (including a itself). 

The partial realization T 1 : s1 ➔ ~C(X,'i,J") 

where t 
is said to be of norm < L ---- ~ 

is another covering of X, if for every a E S there is a ·c E t such 

that T 1(µ) is on C for allµ E s1 n S(a). 
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Let x2 c x1 be a pair of topological spaces; let t 1, UJ and 

t 2 , u2 be finite covers of X 1 , x2 respectively with UJ and 'U.2 open 

covers and t2 ~ C 1' u2 ~ U 1 · Then we say that the pair ( 'U. l, U2) 

has enough controlled realizations for dimensions ~ n ( ( U. 1 , U.2 ) has 

ECR( n)) with respect to ( 'C 1 , C 2 ) if for every s1 c S every partial 
,, 

realization -r 1 : s1 ➔ LiC(X2 ,U2 ) of norm~ t_2 extends to a partial 

realization -r : Sn U s, ➔ LiC(x,, u1) of norm ~ C 1 . I.e. we have a 

commutative diagram 

V 

LiC(X1,'U.1 ) 

for some suitable refining homomorphism i. 

6.2. Q,cn and c-tcn Refinements. ----

Let x2 c x1 be a pair of topological spaces and let t 2 , t' 1 be 

covers of x2 , x1 respectively ~uch that t 2 ~ t 1 . Then t 2 is an 

ten refinement of t 1 if for every 'U 1 E covf (X 1} there exists a 

11 2 E covf(x2 ) such that U2 .::._ U. 1 and ( U1 , 112 ) has ECR(n+1) with 

respect to ( t 1 , t 2 ). If t 2 is an fen refinement of t 1 for every n, 

'( 2 is said to be an £cw refinement of t 1 

NB. Q,cn corresponds to ECR(n+1). 

Let X be a space and let C 2 < t 1 be covers of X. We say that 

'C, 2 1.s a, c-Q,cn refinement of . t 1 if for every compact set K2 c X there 

is larger compact set K1 in X such that t 2 j K2 is an Q,cn refinement of 

'C 1 I K1. If C 2 is an c-icn refinement of 'C 1 for every n, t 2 is said 

to be an c-Q,cw refinement of l: 1 . 

6.3. Elementary properties. 

Let x3 c x2 c: x1 and let l:. 3 , t 2 , t 1 be eovers of x3 , x2 , x1 

respectively such that L 3 :_ C 2 :_ C 1 . Then 

( i) If t 2 1.S an ten( te (J_l) refinement of L 1 then so 1.S t 3 

(ii) If t 3 is an ten( Q,cu.1) refinement of C 2 then it 1.s also an ten( Q,cu.1) 

refinement of 'l: 1 . 
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Let t 2 2- t 1 be two covers of a compact space X. Then 

(iii) t2 is an c-Jlcn(resp. c-Jlc 
(J.l) refinement of ~ 1 iff 'e2 is an 

n tc (resp. !lcw) refinement of t 1. 

6 4 n n n . . ~ Spaces and !£._ and c-£.c Covers. 

A compact space is said to he ten (resp. tcw) if every finite open 

cover has an ten (resp. tcw) refinement. 

A covering t of a space Xis c-Jlcn (resp. ten) if it is a c-tcn 

(resp. ten) refinement of the trivial cover. 

One cou.J..d perfectly well define what a c-tcn (resp. c-tcw) space 

would be. But there seem to be very few examples, which are noncompact; 
w we know none. The property !le seems somewhat weaker than !le*. 

(cf. e.g. Begle [1] or Thompson [10] for a definition of ic*). 

7, AC:YCLICITY AND c-kn REFINEMENTS 

We ha~e seen (er. 4.5) that some kind of localacyclicityis implied 

by the existence of n-geometric covers. On the other kind given acyclicity 

properties of a suitable kind one can go a fair way towards the construction 

of n-geometric covers as we shall attempt to show in this and the next 

section~ The first step is to show that given suitable aeyclicity conditions, 

partial realizations can be extended. One has even better control over 

the supports than is needed for c-Jlc0 refinements and thi., results in some 
11 , I 
uniqueness up to homotopy statements and these in turn will permit us 

to construct n-geometric covers in section 8. 

7.1. Lemm.a. 

Let K2 c K1 be compact spaces and suppose that for a certain n 
v.... v,.,, 

the induced homomorphism Hn(k2 ) + Hn K1) is trivial. Then for every 

finite open cover 'U. 1 of K1 there is a finite open cover U2 of K2 such 

that U.2 ::. U 1 and 

is the trivial map. 

Proo~. We have a commutative diagram 
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tt' ( K0 ) 

l* v,., 
Hn (K 1 ) n c.. 

l ¾1 l ¾1 
~n (K2' 'l11) 

l* 'v 
-·--·-·->- 11n(K1,1l1) 

where J. : K2 -)- Kl lS the: inr:lus·i on. By the Lefshetz theorem (cf. , 2 ' ) ) \ • .! 

there LS a finite open cover 'U,, of K,, refinine; u1 such that 
' C. 

It follows that the natural map ~n ( K2 , U2 ) -+ B'.n ( K1 , U 1 ) is trivial. 

Note that any refinement 11 2 of U2 also works. 

7.2. Definition and Construction. 

Let x2 c x1 be topological spaces and let t 2 , t 7 be finite 

covers of x2 and x1 respectively such that t 2 .::._ t 1 • Let j: t 2 ➔ C1 

be a refinement map. We say that j is acyclic in dimension n if for 

all subsets iJ4. 2 c t 2 and all compact subsets K2 c n c,{ 2 there 

is a compact subset K 1c nj (c>t 2 ) such that K2 c K 1 and such that 

(7.2.1) H'0( K2 ) -+ H"-'( K 1 ) is the zero map 
n n 

Now let n 0 and n be nonnegative integers. Suppose we have a sequence 

of finite closed covers CO .::._ "t 1 .::._ •• .::._ t n+l of a space X with 

refinement maps jk : t k .,. t k+l, k = 0, 1, ... , n such that jk 

is acyclic in dimension n + k. 
0 

Let K be any compact subset of X. Then there exists a 

sequence of compact subsets 

(7.2.2) 

such that for all c/-k c 'r k such that Kk n ( n c.+ k) 'f ¢ • 

~; +k(I\ n(no4k))-+ H: +k(~+1 n(n jk(cJtk))) is the zero mup 
0 0 

and consequently for every finite open cover V'n+l of Kn+l there cxi::;t s 

a sequence of open covers 1J-k, k = 0, 1, ... , n, 
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(7.2.4) 

is the zero map 

The sequence (7.2.2) 1s constructed as follows. Suppose we have 

found~• k .::_ 0 for every cAk c tk such that Kk n(no,k) I- ;p let 

Kk(.,4k) be a compact set containing¾: n(r,c.Jf- k) and contained in 

n jk(A,k) such that (7.2.1) is satisfied. 

Now let Kk+ 1 be the union of all the ~(cJ#.k). Then of 

course ¾+ 1 n(njk.,f~ :::>~(~k) so that (7.2.3) is satisfied. To find 

the sequence (7.2.4) such that (7.2.5) is satisfied 9 apply 7.1 repeatedly. 

7.3. Proposition. 

Let 't < ••• < C +1 be a sequence of finite closed covers of a 
o - - n 

space X with corresponding refinement maps jk: 't k -+ t k+l such 

that jk is acyclic in dimension n + k. Let t ' < l: have a 
0 0 - 0 

refinement map i: t ' -+ t such that C' c interior ( i ( C' ) ) for 
0 0 0 0 

all C' Et'. Let s1 c S be a pair of (finite) simplicial 
0 0 

complexes. 

Let K = K c K7 c ... c: K 1 be as in 7.2. Then for every V-+ 1 E covf(K 1 ) o n+ n n+ 

there exists a sequence ·lJ O .::._ 1J 1 2 .. -.::._ 1Jn+ 1 , '1.tk E covf(YK) such that 

for every par+:.ial realization 

n 
'o : S o U 

.., 
S ➔ /'o.C ( K , lJ ) 

1 O O 

of norm < 't ' there exists a sequence of partial realizations 
0 

n +k 
s 0 k=O, ... ,n+1 
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such that 

'k+l f)Xtend:; 'k, k = O, 1, ..• , n 

n +k. 
(7.3.2) if a is a simplex or C 0 

0 1s on 

Let cr 1 , ••• ' 0 s 
C' ( r) such that 

0 

because 

of a } .. r 

T is of 
0 

k = O, 1, ... , n+1 

and cA(cr} is defined as follows. 

be the maximal simplices of S. For each a choose a n r 
-r 0 ((s 0 us 1 ) n s(o )) is on C 1 ( r). (Such C' ( r) exist r 0 0 

norm < t '). Now define c,lc (J) = {CI ( r) I (J is a face 
- 0 0 

Moreover in the case n = 0 there is the following homotopy 
0 

property: If 17'" < lJ 11 < ••• < ,q. ' < "q.. 1 is a second series of refinements o - - - V n - v n+ 

d 1 I 
an 'o' '1' ... , -r' a second series of extensions such that (7.3.1) n+1 

and (7.3.2) hold and if -r' = T on S then 
0 0 1 

~('~+ 1 ) = l\(Tn+ 1 ) fork= 0,1, ... , n. 

Remarks. 1. If n0 > 0 and , 0 = T~ then also l\('~+ 1) = l\('n+1) 

fork= 0, ... , n +n. 
0 

2. In general there are several different choices for the 

C~(r) and correspondingly one finds different t4Ccr) and different -rk. 

The proof of proposition 7.3 is in several steps: subsections 7.4 

- 7.7. The first step is to choose V- < ••• < V- +l such that (7.3.2) holds o- - n 
for k = 0 
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7 .4. Remarks .2!!_ ~"4hl and~ Se51uence V'0 ~-. -~ ,,. n+l • 

f 
Choose a sequence of' covers 1' 0 ~ '\J' 1 ~ ••• -2_ \t n+ 1 , "it € cov ( 1\:) 

such that (7.2.5) is satisfied. Re:fining ,,. i:f necessary we can also 
0 

assume that V E ,,. , V n c• ;. 4> .. V C i(C') € t . 
0 0 0 0 0 0 0 

n 
b . 0 

Leto ea simplex of S U s1 . Leto be a face of o . Then 
r 

-r O ( µ) is on C~ ( r) f'or all vertices JJ of o. Hence V n C'(r); 4> 
0 0 

:for all V occurring in -r (ii°), hence V c i(C'(r)) for all vertices 
0 0 0 0 

V occurring in -r {µ),µ a vertex of a. Hence supp(-r (o)) c: i(C'(r)) for 
0 0 0 0 

all r such that o c o hence supp ( -r ( o) } c: ( n A ( o) ) n K which certainly r o o o 
implies (7.3.2) which says that rsupp(o') n (nd#:(a)) n K ,f: 4> for every 

0 0 

simplex cr' occurring in -r (o). 
0 

Dote that 

(7.4.1) \J a face of O • "' ( µ) ::> A-c CJ) 

(For if o is a face of a then so isµ}. r 

7.5. Existence of the Sequence of Extensions T , , 1, ..• , -r +i· --- - -· o n 

Let U'. < ••• < V- 1 be the sequence of refinements of 7. 4 above. 
o - - n+ 

We have just seen that, satisfies 7.3.2. By induction we can suppose 
0 

that Tk has been constructed such that (7,3.1) and (7.3.2) hold. 

Consider the following diagram 

ao ,... ------4) -rk(ao) E l.lC(n'4k(a)°¾, 1'-k) 

n +k+1 
s 0 u s 

1 

i l 



27 

n +k+l n +k 
Leto ES O , S O , s1. Letµ be an n0 + k face of o. Then 

1:k(µ) is on n c,lk(µ) n Kk henee it 10 certainly on n<J/k(o) n ¾ by (7.1L1). 

Therefore 1:k(ao) is on n cJfk(a) n ~- The image of 1:k(aa) under tis 

homologous to zero because (7.2.5) holds (NB 1:k(aa) is a cycle because 

Tk is an augmentation preserving chainmap). Therefore there exists a 

c(a) such that ac(cr) = 1Tk(ao). Now define Tk+ 1(o) = c(o). Do this for 

n +k+1 
€ S 0 every CJ 

n +k 
's 0 ' s1, and define Tk+l (µ) = R:rk ( µ) for 

n +k 
µ E S o U s1. Note that Tk+ 1 satisfies (7.3.1) and (7.3.2). 

7.6. The Homotopy Property for Equal Refining Sequences. 

Consider the simplicial complex S x I and let s2 be the subcomplex 

s2 = s1 x I. Now define 

(7.6.1) T 
0 

as follows. Let e 1 , ... , e be an ordening of the vertices of S. Then the 
S . o o 1 1 

simplices of S x I are all sets of the form {ei(l), ... ,ei(r)'ei(r+l)'"""'ei(t~ 

such that i(1) < .•• < i(r) ~ i(r+1) < ••• < i(t) and {ei(l)'''''ei(t)} 

is a si!Ilplex of S. We now define T on the vertices of S x I by 
0 

T ( e?) = T ( e. ) , T ( e ~ ) = T 1 ( e. ) and on S x I = S we define T by 
O l O l O 1 0 1 1 2 0 

( o o 1 1 ) 
To {ei(1); ... ,ei(r)'ei(r+1)'""'ei(t)} = To{ei(l}'"'"'ei(t)} = 

T~{ei(l)'"'"'ei(t)}. Then T0 satisfies (7.3.2}. Now extend T0 to Tn+l 

Exactly as we extended T to T 1 in 7.5, ta.king care to define o n+ 
Tk(cr) = Tk(cr) if CJ is a k-simplex of the form {e~(l)•··,e~(k+l)} and 

Tk(cr) = Tk(o) if a is a k-simplex of the form 

1 
•.. , ei(k+l)}. We then have a chain map 

llt1 
which restricts to T +l on S x {O} U s1 x {O} and to T~+l on 
n~ n 

8 X {1} U S1 X {0}. 

This proves that Hic(T~+1) = Hk(•n+l) fork= 0,1, ... , n. 
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7. 7. The Homotopy _Property for Different Refining Sequences. 

Now let V' < ,., < ••• < ~~ 1 , "q. < '1)' 1 < ••• < ,,._, < ~ 1 and 
0 - V 1 - - V n+ VO - 1 - - V n - n+ 

·r· ·1· , • -r' , 11 • • •• , 'n' + 1 be two different sequences of 
o' 1 ' • • • ' n+ 1 ' o' , 

refinements 

(7.3.2) are 

m = 0, 

with corresponding 'k and 'k such that (7,3.1) and 

satisfied. It suffices to prove that Hm(Tn+l) = Hm(T~+l), 

n in case 'IJk .::_ ·lJ" k for all k = 0, ••• , n+ 1 • ( Take a 

common refinement of the two refinement sequences such that (7.2.5) 

holds for this common refinement sequence). Define,;= tko Tk 

where tk is induced by a refinement map; we can take Q0 = 2n+ 1 = 

'd . Th " " t f 1 entity. en T0 , ••• , Tn+ 1 ; , 0 , ••• , 'n+l are wo sequences o 

extensions corresponding to the same refinement sequence satisfying 

(7.3.1) and (7.3.2). Therefore Hm(Tn+l) = Hm(T~+ 1 ) form= 0,1, ... , n. 

'T • 8 . Corollary. 

Let t 1 < t < ••• < t be a sequence of closed covers as in o - o - - n+1 n -I 

7. 2, 7. 3 and let ~" < )- ' be a c-lc O extension. Then t " < t ~o - ~o o - n+1 
n +n 

is a c-lc O extension. In particular if n = 0 then t' < t 1 is a 
o o - n+ 

c-.lcn extension. 

Proof. Let K be compact, choose K0 such that for every 1'-0 E covf(K0 ) 

there is a v-; E covf(K) such that ( 1'0 , V-~) has ECR(;1_:) i,ith respect 

to ( l: ', ~"). Now let K c: K1 c: ... c K +1 be as in 7.2. For every 
o of o n 

'V" +l E cov (K + 1) let 'If < V,1 < ... < 17: +l be a sequence of refinements n n o- - - n 

as in 7 .2. Now let 'lt' be such that ( V- , 1'"') has ECR(n ) with respect to 
0 0 0 0 

V 

(t~,t~) and let T be a partial realization of Sin t.,C(K,1'~), 

-r s 1 ➔ ~C(K, ,,.;) of norm 2.t~-
n 

Then there exists an extension , 0 : s1 U S O ➔ ll.C(K , 1' ) of norm 
0 0 

no+n+J v 
< t' which in -o turn can be extended to 'n+l: s1 U S _,. ~C(Kn+J, 1" n+l) 

by 7,3. This extension 'n+l satisfies (7.3.2) and therefore is of norm 

< L n+1 · 
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7.9. Examples of c-ic° Covers and Hefinements. 

Let t ' be any cover of fim and C - ... = C = {!im}. Applying the 
o o n 

corollary and 6.3 we see that any cover of IRm is a c-.llcn cover for all 

n, i.e. a c-£cw cover. 

Let C be a closed convex cover of Rm and l: 1 2.. t" such that 

for every C' E t• there is a CE L with C' c interior(C) then 

t' .::_tis an c-.ll,cw refinement. 

7. 10. Corollary. 

Let dimX < n and let t• .::_ t be a c-tcn refinement where t is 

a closed cover. Let t .::_ t II such that for every C E t there is a 

C" E t " with C c interior ( C"). Then l:' < t II is an c-.ll,c w refinement. 

Proof. Take t = •.• = l: 1 = t II in 7 .8. The acyclicity conditions o n+ 
now follow from the finite dimension assumption (cf.3.4). 

8. ACYCLICITY AND n-GEOMETRIC COVERINGS 

We can now construct n-geometric coverings given suitable 

acyclicity assumptions. 

8. 1. Theorem. 

Let U' < )" ' < )'P < ••• < t 1 be a sequence of covers of a space X -'--o -'--o n+ 
such that 

( i) 

(ii) 

(iii) 

(iv) 

U ' :i.s a finite open cover; t ' , t , ... , t 1 are finite o o n+ 
closed covers. 

for every C' Et' thicTe is a C Et': such that C' c interior(C) 
0 0 0 0 0 0 

U' is a starrefinement of t:' 
0 

C k < 't 1 is acyclic in dimension k. 
- k+ 

Then 'Cn+ 1 is n-geometric and U' E 01.( t n+ 1 ). 

Let r be any cofinal collection of compact subsets of X. For every 

KE r choose a s~quence K = K0 c K1 c ... c Kn+ 1 such that (7.2.3) is 

satisfied. Enlarging Kn+ 1 if necessary we can assume that also Kn+ 1 Er 

Define yK = Kn+ 1 • For every ,.,.= 1' n+ 1 E cov( Kn+ 1 ) refining U' choose 

a sequence 

< •• ,< ·" V n+1 



30 

such that (7.2.5) is satisfied. For each C'(i) Et' choose 
0 0 

C (i) E 'e 
0 0 

such that C~(i) c interior(C 0 (i)). Refining 1'0 if necessary we can 

assume that 

(8.1.1) 

Let S = C(K, U'), s 1 = s0 • We now define , : s0 ->- 6(K , V- ) as 
0 0 0 

follows. For each U'(i) E U 1 choose a V (i) such that V (i) n U'(i) ¥ cp, 
0 0 

and define, (U'(i)) = V (i). I.e. we have 
0 0 

(8.1.2) T (U'(i)) n U'(i) n K ~ qi 
0 0 

For each U'(i) choose C'(i) such that star (U'(i)) c C'(i). I.e. 
0 0 

(8.1.3) U'(j) n U'(i) f' <P ~ U'(j) c C'(i) 
0 

Now let a= {U'(i ), ... ,U'(i )} be a maximal simplex of S = C(K, ll'), 
o m 

i.e. U'(i 0 ) n ... n U'(im) n K ~ cp and hence 

(8.1.4) 

It follows that 

(8.1.5) 

U'(i) cC'(i) 
r o s 

supp(o) c C'(i ) n K 
0 S 

r,s=0,1, ..• ,m 

s=0,7, ... ,m 

Now, (U'(i )) n U'(ir) n K0 -:j:. cp, K n U'(i ) c C'(i ) n K. Hence 
o r o r os o 

(8.1.6) T (U'(i )) lS on C'(i ) n Ko o r o s r=O, ... ,m; s=O, ... ,m 

which by (8.7 .1) implies 

(8.1.7) T (U'(i ))cc (i) nKO o r o s r, s = O, ••. , m 



We can now choose theJ(o) as follows. For each maximal simplex 

at choose a vertex U'(t) of at and let C~(ot) = C~(t). Then 

(cf. 7.3) vf-(a) = {c;(ot)la c:ot, ot maximal}. In view of (8.1.5), 

( 8 . 1 • 7) we have for all a E 6 ( K, U' ) and µ E c0 ( K, U' ) 

(8. 1.8) 

Now, using these<'(.(o), construct a sequence of extensions 

• 0 , • 1, •··, 'n+l as in (7.3). This gives chain maps 

'1" = 'n+1 : Cn+1 (K, 'U.') -+ ~C(yK, U,) 
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We now check the various axiomes which the •i, have to satisfy. 

(a) The norm condition (cf. (3.1.4). This is satisfied because 'n+l = ''\J-

satisfies (7.3.2) and because we have (8.1.8) (first part) . 

(b) 
.., .,, 

The factoriZa.tion property (cf. 3.1.2). Let i : C(K, 'It.) -+ C(K, U.') 
V 0 

be any refining map; let ik : C(~, 'ltk) -+ C(~+l' V-k+ 1 ) be refining 

mapsfork=O, 1, •.. ,n. DefineTk=,ko i,k=O, ... ,n+1 

and•~= id, 'k.+1 = iko ... o i 0 , k = O, .•. , n. We then have two 

sequences of maps 

satisfying (7.3.1) and (7.3.2). Hence H (, +l) • H (i) = H (,'+1), m n m m n 
m = O, ... , n which proves the factorization property with~•= \!t;· 

(c) The comptability property (cf. 3.1.3) 

Let \"1, V-2 be two open covers of yK = Kn+, su~h that 1'1 2-_ 1'" 2 < U' 

let V0 (1), ... , ,J'n+ 1(1) =<ii1; 1)-0 (2), ... , ,,.n+l(2) =½and let 

T ( 1), ... , T +l ( 1) = .,.. ; T (2), ... , T +1 (2) = • .. ,- be the corresponding 
o n v 1 o n v 2 
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sequences of chain maps. Choose a common refinement 1' of ~ ( 1 ) 
0 O 

and 1J (2). Define T : c0 (K, tl') + t,C(K , 1'° ) by assigning to each 
0 0 O 0 

U' a V such that U' n V ~ ~-o 0 

Let i 1 : ~ ➔ 'lJ;, (1) (resp. i 2 : ~+ 1'0 (2))be any refinement map. 

Define T 1 ( 1 ) = i T T' ( 2) - · a d 1 t ' ( 1 ) 1 ( 1) o 1 o, o - i2 To n e To , ... , t n+ 1 

(resp. 1: 1 (2), ... , 1: 1 1(2)) be the sequences of extensions obtained o n+ 

by using 1'(1) < .•. < 1J (1) (resp. ~ (2) < .. ,< 1J- (2)). Then 
o - - n+ 1 o - - n+ 1 

Hm(T~+1(1)) = Hm(Tn+ 1(1)) and Hm(T~+ 1(2)) = Hm(tn+l(2)) form= o, ... , n 

The sequences 

... , T 1 (1), ioT 1 1(1); T , 1: 11 (2), ... , T 1 1(2) 
n n+ o n+ 

where i is any refinement map C( yK, 1"1 ) + C( yK, ~ 2 ), are sequences of 

extensions corresponding to the sequences of refinements 

and therefore we have that Hm(iT~+ 1(1)) = Hm(1:;+ 1(2)), m = 0, ... , n 

and hence H (iT 1(1)) = H (1: 1(2) form= 0,1, ... , n, which m n+ m n+ 
proves the comptability. 

This theorem is especially useful in the case of convex or more 

generally convexoid covers. 

8.2. Convexoid Covers (Definition) 

A finite closed covert of a space Xis called convexoid in 

dimensions 2- n, if t 2- t is acylic in dimension k for all k = 0, l , ... , n 

I.e. for every k = O, 1, ... , n and for every subset c,f ct and every 

compact set Kc n~ there is a larger compact set K' c n~ , Kc K' 

such that H:(K) + H;(K') is the zero map. 't. is called convexoid if 

is convexoid in dimensions < n for all n E r:r. 
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8.3. Corollary. 

Let U.' ~ 'C 1 ~ 'C be a sequence of covers such that 

(i) 'U. 1 is finite open, t', t are finite closed covers 

(ii) 'U' is a starrefinement of t' 
(iii} for every C' E l:' there is a CE l: such that C' c interior(C) 

(iv) t: is n-convexoid 

Then t is n-geometric and U' E 0t.O: ) . 

Proof. Apply 8.1 with t; = 'C 1 , t 0 = t 1 = ... = tn+1 = L . 

8.4. Theorem. 

Lett be a finite closed convexoid covering of a normal 

space X which admits a finite open refinement. Then 'e is geometric 

Proof. Let Ube a finite open refinement of 't . Because X is normal 

there exists a finite open starrefinement 1" of U. Let °t' be the 

covering consisting of the closures of elements of V-. Finally let 

it.' be a finite open starrefinement of 1'-. The chain of cover1ngs 

< ••• < 'C n+1 

with t-t0 = t 1 = ••• = 'C 0 +1 then satisfies the conditions of 

theorem 8.1. 

q.e.d. 
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8.6. Further Remark. 

Instead of relying on acyelicityconditions to construct geometric 

1 1 n r· . covers one can a so re yon c-tc re 1nements in order to be able to 

construct the necessary chain maps. In fact for the application to the 

construction of n-geometric covers a somewhat weaker notion: weak 

c-icn refinement is sufficient. This is defined as follows. 

Let Kc K', 1'" E covf(K), V- 1 E covf(K' ). The pair ( ,,. 1 , 'It) 

is said to have weak ECR(n) with respect to ( l::', 't:) if for every 

complex S of dimension~ n and partial realization T s1 + ~C(K,,,-) of norm 

< 't there exists a realization T': S + L1C(K', V'') of norm < t' 
extending t. 

A pair of covers t 1 ~ L 2 of a space X is then a weak c-tcn 

refinement if for every compact K1 c X there is a larger compact K~ 

such that for every lt 2 E covf (K2 ) there is a refinement ,,.1 E cov (K1) 

such that ( ,,..2 , 1'1 ) has weak ECR(n+1) with respect to ( 'e 2 , t 1 ). 

One now has e.g. the following theorem 

Theorem. Suppose we have a seg_uence of covers 'U.' < t ' ~ t" ~ l: of a 

space X such that 

( i) "U I is a finite open cover; t I> t" > l: are finite closed covers 

(ii) 'U I l.S a starrefinement of t I; 'e" is a star refinement of 'e. 
(iii) tis n . f a weak c-R.c covering o X (i.e. t < {X} is a weak c-R.cn -

refinement. 

And suppose that in addition one of the following conditions 1.s satisfied 

(iv) t' l.S a weak c-icn refinement Of l: II 

(v) dim 'U.' < n and t' is a weak c-ic n-1 refinement Of t II 

(vi) dimX < n and t' n+1 refinement of 'C" l.S a c-ic 

Then tis n-geometric and 1.L' E 01 ( I:) . 

The proof of this theorem is very similar to the proof of theorem 8.1 

However, one has slightly weaker control of the supports and it is to 

overcome this that one needs the extra starrefinement t 11 < t and condition 

(iii). For details cf. (12]. 



9. CONVEX COVERS OF EUCLIDEAN SPACES. 

In order to pr_ove that euclidean spaces have the almost fixed 

point property with respect to finite open convex covers and 

continuous maps we need the following refinement-of-convex

coverings result. 

9.1. Theorem. 

Let A be a finite inte~section of closed halfspaces in ~n 

or A= Bn. Then for every finite open convex covering U of A 

there exists a finite closed convex covering t such that 

( i) t 2-_ 'U , i.e. t refines U 
(ii) The interiors of the elements oft still cover A. 

To prove this we use some lemmas. Let Uc Rn, U # Rn be a convex 

set, U its closure. We define a function r U : U + R by 

rU(x) = sup{rlB(x,r) c U} where B(x,r) is the open ball of radius 

rand center x. 

9.2. Lemma. 

ru: U +Risa concave continuous function. I.e. 

9.3. Lemma. 
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n Let C be a closed convex subset of an open convex set Uc~ . Then 

there is a closed convex subset C' such that Cc int(C') c C' c U. 

Proof. Define 

C" = {x E Dl3y EC such that II X-YII ~ hu(y)} 

We check that C" 1.s convex. Let II x 1-y 1 II 2-. hu(y 1), II x2-Y 2 11 < ~r 0(y 2 ) -

Let O <A< 1. Then 

2-. ~Aru(y 1) + ;(1-A)ru(y2 ) 2-.; ru(Ay 1+(1-A)y2 ) because ru is 

concave. Now let x be a point in the closure of C". We show that x EU. 



This will prove the lemma. (Take C' = C"). Let (x.), x. E C" 
l. l. 

be a sequence of points converging to x. Let y. be such that 
J. 

II xi-Yill 2-.. ~ru(yi). Note that ru(xi) > hu(yi). Consider the 

sequence of real positive numbers rU(yi). If lim inf ru(yi) > 0 

then lim inf ru(xi) > 0 and hence rU(x) > 0 • x EU. If 

lim inf rU(yi) = 0 we can assume by taking a subsequence that 

lim ru(yi) = 0 because II xi-Yill < ~rU(yi) it follows that yi 

converges to x. But y. EC and C is closed hence x EC c: U. 
l. 

q.e .d. 

9,4. Lemma. 

Let Ac: 8° be a convex set and let x be a point in the interior 

of' A. Let t be a ray starting in x and suppose R. c: A. Then 

(i) t c: int(A) 

(ii) 3E > 0 such that d(y,t) 2._ e • y E int(A), where d(y,R.) 

is the distance of y tot. 

Proof. Let y E i, and let y' be a point on R. twice as far from x 
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as y. Let B be small open ball around x such that B c: A. The linear 

combinations ~x + ~y•, y' EB then constitute an open ball around y, 

which proves that y E int(A). This proves (i). To prove (ii) consider 

the function rA: R. ~ fl this function is concave and continuous and 

rA(y) > 0 for ally ER. . It follows that there is an e > 0 such 

that rA(y) ~ E for ally Et. This proves (ii). 
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9.5. Proof of the theorem. 

If U. is a finite open covering of A we denote with s(U) the 

total number of simplices in ~(U). By. induction we can assume that 

the theorem has been proved for dim A< n and dim A= n and s(U) < s. 

(The cases dim A= 1 and s(U) = 1 being trivial) 

Let Ube a convex open covering of A, dim A= n and s(U) = s. 

There are two cases to consider 

In case (a) let 'U' c U be a maximal subset such that 

n U' # ~- Choose U E U,,u,,. By the separating hyperplane theorem 

there is a hyperplane H such that U is on one side of H and n U ' 
+ on the other. Let A and A- be the intersections of A with the closed 

halfspaces determined by H. Then 

and by induction we are done with this case. 

Suppose we are in case (b). We can assume that Ac Rn, dim A= n 

hence int(A) -l ~. dim U = n for all U EU.. Let x Entl. We can see 

to it that also x E int(A). Let S be a sphere with center x. Each 

points ES corresponds uniquely to a ray i starting in x. For 
s 

every ray £ there is a U EU such that i c U. This is seen as 
s s 

follows. If is n A f is then there is a unique point y8 Eis n A such 

that is n A= segment joining x and ys; ys is in the boundary of A. 

If is n A= is choose points y 1, y2 , y3 , ... on is at distance 1,2,3, ... 

from x. At least one U EU contains infinitely many of these points. 

Then i c U. 
s 

For every U E U we now define a set CU as follows 

CU= {y E Al3s ES such that y Eis c U} 

Concerning these CU we have 

(i) CU is convex, CU c U 

(ii) Cu is closed 

Claim (i) is a triviality. To prove (ii), consider CU n S. 
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Let (s. ), s. E Cun S be a sequence of points converging to s ES. 
J. J. 

Let z be a point oft. Then z is the limit of a sequence of points 
s 

z. E .ll ( take z. E t such that II z1. -x II = II z-x II . Hence z E U. 
J. s. J. s. 

J. J. 

Hence t c U and hence t c int(U) by lemma 9.4. This proves (ii). s s 
To deal with the rays t such that£ n A# 1l we use the s s s 

following construction. The boundary bd(A) of A is a finite union 

k 
A= U At, dim At= n-1, At a finite intersection of closed halfspaces. 

t=1 

For each t let D1(t), ..• , D (t) be a finite closed convex covering 
nt 

of At which refines U1 At. (Induction!) 

For each t and i E {1, ... , nt} we define 

Ct . = {y E Al3z E D.(t) with yon the sequent Joining x and z} 
,J. J. 

For each Ct ,i choose U EU, such that Di ( t) c U. Then we have 

(iii) Ct . c U and Ct . is convex 
,J. ,J. 

(iv) Ct . CU 
,J. 

Claim (iii) is a triviality. To see (iv) let Tc: S be the subset of 

s ES corresponding to rays in Ct .. Let (s. ), s. ET be a sequence 
,J. J. J. 

of points converging to s ES. There are two possibilities. 

First t n A~ .ll • The sequence y of endpoints then converges to s s s. 
J. 

y and because y E D.(t), y E D.(t) so that .ll n Ac Ct . cu. 
S s. J. S J. S ,1 

J. 

Secondly suppose that .ll n A= .ll (i.e. the points y run off to 
s s s. 

J. 

infinity) . Let z E .ll • The distance 11 x-y 11 goes to infinity as s s. 
J. 

i ➔ 00 (Follows from lemma 9.4 (ii). Hence z is the limit 

of a sequence of points z. E £ n Ac U. Hence z ED. Thus .lls c: fi 
J. s. 

J. 

hence t c U by lemma 9.4. (i). We have now found a closed convex 
s 

finite covering consisting of 

CU' U EU ; Ct ,i, t = 1, •.. , k; i = 1, ... , nt 



of A which refines U.. Thickening each CU and ct,i as in lemma 9.3 
then gives a finite closed convex covering t which refines U and 

such that their interiors still cover A. This concludes the proof 

of the theorem. 
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We can now prove the following almost fixed point 

theorem for euclidean spaces which was conjectured by De Groot, cf. [2]. 

9.6. Almost Fixed Point Theorem for Euclidean Spaces. 

Let 11 be a finite open convex covering of Rn, and f: Rn+ Rn 

a continuous map. Then there is a U EU such that Un f(U) 1 ~-

Proof. Lett be a finite convex closed refinement of 11 such that the 

interiors of the sets int still cover Rn. Such at exists by 

theorem 9,1. The covering tis geometric by theorem 8.4. It now 

suffices to apply theorem 5.2. 



Addendum to Report 7501 (On almost-fixed point theory, by 

M. Hazewinkel and M. van de Vel) 

I. Very recently it was pointed out to us that in [16], a paper 

·which deserves to be much more widely known than apparently it is, 

Dugundji also gives a proof of de Groot's conjecture. 

The methods are different. 

2. Using practically the same arguments as in report 7501 one can 

prove Theorem. Let Ube a finite convex open covering of a 

locally convex space X and let f: X + X be a continuous map. 

Then there is a U E ~ such that Un f(U) I~-
This result is not covered by Dugundji's theorem. 

April 30, 1975. 

Additional reference 

[16] Dugundji. A duality property of nerves. 

Fund. Math 59 (1966), 213-219. 
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