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In this note we construct some counterexamples conceming upper
semicontinuity and linear upper and lower semicontinuity of the
solution sets and e-solution sets of nonlinear programming programs:
max f{x), subject to gl{x)=b. These examples answer some of the
questions in a recent paper by Stern and Topkis.

E CONSIDER the programming problem max f(z), g(z) £b, where f
is a function ®"—®, ¢ a function ®"—R™, and b an m-vector. Here
g(x) Sbmeansg;(z) Sh;forallj=1, ---, m. Wedefine S;={x¢ ®&"|g(z) S b}
and for all 20 we define the e-sclution set
Sre={z¢ ®RMz€S, and f(x) Z —e+max,es, f(2)}.
We are interested in upper and lower semicontinuity and linear upper ‘and
lower semicontinuity of Si. as b varies. For a definition of these notions

see [2]. We will construct some examples that answer some of the questions
asked 1n [2].

1. EXAMPLES

Example 1. In this example g, is lincar for all j, —f is a convex differ-
. . - o B e . .
entiable function, Sy is compact, but Ss is not lower semicontinuous.
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Let f be the function defined by f(a1, x2) =25"/x; on the open halfspace of
®* where 2; <0. The function —fis convex on {2€ ®@*|z; <0}.

Now define ¢g1(x1, 22) = 21, g2 @1, T2) = — 1, ga{x1, 22) = 2o, gu(1, 12) = — 5.
Let 5(0) be the vector (—14, 1,0, 1) and b(8) the vector (—14,1, —5,1).
Then Spey={(21, 22)| =112 —14, —1L2,<~3} and the solution sets
Sy of the problem max f(x), g(x) £b(8) are Skoy.o={(x1, 22) |22=0,
—1=m2-14} and Symo={(—1, —8)} for all §>0. Therefore, Sy, is
not lower semicontinuous with respect to b in b(0).

Ezample 2. In this example g; i8 linear for all 7, —f is a convex differ-
entiable function, S, is compact, but Si, is not linearly upper semicon-
tinuous. Let DC®” be the region x:°+1," 1. Let f : ®*—® be the function
defined by f(x) = —(d(z))?, where d(z) is the distance of x= (a1, 23) to D.
A formula for f(z) is f(z) = — (max {0, (z,°+2,")"*—~1})*. The function
f is continuously differentiable. Further, —f is a convex function. Now
define ¢1(z) =axs, go(x) =11, g3(x) = — a2, gs(z) = —21 . Let b(0) be the
vector (2, 1, —1, 1) and b(8)=(2,1, —1+46, 1), 6>0. Then we have
Spo={(0,1)} and Sy o={ (1, @) 2"+ S 1, 222135},

The point B = ((26~6")"%, 1—6) isin Sss) 0 and has distance = (25—8%)"*
to A=(0,1). It follows that Sy, is not linearly upper semicontinuous in
b at (0).

Ezxample 3. In this example —f is a convex differentiable function, S, is
compact and uniformly linearly continuous. For every e with 0=2e<1{4
there is a b(e,0) such that Si. is not linearly upper semicontinuous in
bat b(e 0).

The function f in this example is the same as the function fin example 2
above. There are five restriction functions:

— (Y11t 3522+ 36) + 34 (M4 — 4(m— ) (21— 224+35) )
if zy—~220 and 1—15135

—-o; if m—220

—2+¥ U 12218,

qi(x) =

92(x) =21, g5() = — 12, ga() =22, and g5(2) = — 1.

The functions g, are all continuously differentiable. The level curves of
¢ are straight lines joined by a quarter circle of radius 14 (see Figure 1).
Choose 0= e<1{g. Let b(e,0) be the vector (—34—€, ¥4, 34, %4, 35)
and b(e, 8) =(—34—¢"+5, %4, 34, %, 35). We then bave for =0 suffi-
ciently small Sy 4. ={ (1, 22) |x12+x22§ 14¢ z 234+~ 8 U{ (1, x2) |~Tl2
+a" S 14¢ 222 14" —5}. In Figure 1 the case e=1{g, 6=1{o is shown.
Shen. consists of the cross-hatched area and the point A and Siie.s e 18
the union of the cross-hatched and shaded areas.

It now follows as in example 2 that Si. is not linearly upper semicon-
tinuous in b at b(e, 0).
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2. REMARKS
Ezxample 4.12. If one changes the function f of example 3 to
J(x) = —(e(x))?, where e(z) is the distance of r to the region { (21, x2) |2y

2 .«
< —zr +1}, one can construct an example similar to example 3 such that
for every €20 there is a b(e) such that Sy, is not linearly upper semicon-
tinuous in b at b(e, 0).
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Figure 1

Ezxample 4.2. By repeating infinitely often the trick by which the func-
tion g; of example 3 was constructed, one can construct an example with
the following properties: 1) —f is a convex differentiable function; 2) g
is a continuous differentiable function; 3) gs, - - -, g5 are linear functions;
4) 8, iz uniformly linearly continuous for b in a suitable hypercube B; and
5) for every b(Q) in the 4-dimensional subcube of B where b= —1 there
is an infinite sequence {e(n)},., e(n) >0 such that Sy 18 not linearly
upper semicontinuous in b at b(0) for all n€ 9. Moreover, lima< e(n)=0
and Sso is not lincarly upper semicontinuous in b at b(0).
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In this example f, g2, - - -, g, are as in example 3. The function g i3 con-
structed as follows. We first define the level curve gi(x) = — 1. Draw rays
I, from the origin in &’ at an angle of 27" ' with the positive Xy-axis. Let
A, be the point on [, at distance 14-a, from the origin. In the points A,

g!(xli—l

draw lines m, perpendicular to l.. If one takes, e.g., a.=4"""'7°/2, then
the intersection point of m, and m,, i3 in the angle formed by I, and
ln+1. Now join suitable segments of the m, by “smoothing the corners in
the intersection points.” This can be done by means of circle ares of radius
1¢. The resulting curve C is differentiable and has the property that it is a
straight line near every intersection point CNl,=A4,, n€ 3t
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Let EC®” be the region
E={zc®r:2 1 U{z€ Rz 2 W U{z € ®m 20, 20, z]|=24).

The boundary of E is the dashed line in Figure 2. For each 2€ E let [,
be the ray from the origin passing through z, B, be the intersection point
I,NC, and r, be the distance of B, to the origin. We now define ¢(z)
= —||z||>". This defines a differentiable function g; : E—®, which by the
familiar tools of differential topology can be extended to a suitable, con-
tinuously differentiable function g;: ®*—®, such that g;(z) = —14 for all
z€®R\E (see [1]).

A suitable hypercube such that property 4 holds is, e.g., defined by the
inequalities ——§ﬁgblg —'2, 3§b2§4, 3§b3§4, 4§b4§5, 2§b5§3 In the
example as described (see Figure 2) property 5 holds for all b(0) in this
cube for which b,=—1. For example, Sy, grows nonlinearly at
b= (—1, by, by, b, b;) as by becomes greater than —1. Nonlinear growth in
the Sy, for e,=a,” at b=(—1, by, by, by, bs) as by becomes greater than —1
is caused by the straight-line sections in the curve gi(x) = —1 at the points
An.

The functions f and g, of examples 2, 3, and 4.2 are continuously differ-
entiable but not twice continuously differentiable. There are similar ex-
amples with f and g; of class C, i.e., n times continuously differentiable
for all n. This is done by smoothing the functions g; suitably, using tech-
niques as in [1]. To obtain suitable functions f one needs only a C* function
h of one variable r that is convex, =0 everywhere and such that A(r) =0
<0=r=1. Such functions h exist, e.g., k(r) = (r—1)%xp (—(r—=1)7 if
rzL, h(r)=0if0=rs1.
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