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We consider programming problems: maximize f(x) subject to g(x) .::_ b, 

where f is a function Rn ➔ R, g a function Rn ➔ Rm and ban m-vector. 

(a< b form-vectors is taken to mean a.< b. for all j). One defines 
J - J 

Sb= {x E Rnlg(x) .::_ b} 

* nl Sb,o = {x E fl x E Sb and f(x) = 

and for givens> 0. 

max 
zESb 

f(z)}, the solution set, 

s* = {x E Bnlx E Sb and f(x),::. - s + max f(z)}, the s-solution set. 
b,s zESb 

One is interested in upper and lower semicontinuity and linear upper 

and lower semicontuinity of Sb, sb* and s*b· as b varies.(Linear semicont:m.uitJ ,o ,s 
is defined below). The setting and motivation for the examples below is 

provided by [1]. These examples answer (in the negative) all the questions 

on page 26 of [1]. 

from S.~ ~ tQ the .. -cower set of 1. Definition. A set valued function'-s~ T. 
s 

Rn is said to be linearly upper semicontinuous at s ES if there exist 

o > 0 and K > 0 such that 

P ( z' , T 5) .::_ K 11 s-s 1 11 for all z' E T 5, , s' E S, 11 s-s' 11 . < o. 

The function si-+ T is said to be linearly lower semicontinuous at s ES 
s 

if there exist o > 0 and K > 0 such that 

p(z,Ts,) .::_ Kl ls-s' 11 for all z E Ts, s' ES, I ls'-sl I < o 

These definitions are taken from [1]. The symbol I I I I is the usual 

norm on Rm and p(z,T) is the distance of z E Rn to Tc Rn, i.e. 

P ( z, T) = inf 11 z-t 11 . 

tET 

* 2. Example. (g. linear for all J, -f convex, Sb compact but S not lower 
J b,o 

semicontinuous). 
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In R3 with coordinates (x1,x2 ,x3 ) let P be the parabola x 1 = -1, 

x3 = -x~. Let Q be the surface obtained by drawing all the lines joining 

the origin in R3 to a point of P. Let (f(x1,x2) be the function defined 

by the surface Q. The function f is welldefined on the open halfspace 

x 1 < O, and -f is clearly convex. It is not difficult to write down 

a formula for f. 

Now let g 1(x1,x2 ) = x 1, g2(x1,x2 ) = -x1, g3(x 1,x2 ) = x 2 , 

g4(x1,x2 ) = -x2 , and let b(o) be the vector (-;,1,0,1) and b(E) the vector 

(-~,1,-s,1). Then Sb( ) = {xjg(x) < b(E)} is the box 
E - 1JheJ * 

{(x1,x2 )j -1 ~ x 1 ~ -~, -1 ~ x2 ~-E} and'(solution sets Sb(E),O of 

max f(x), subject to g(x) ~ b(s), are equal to 

* 
Sb(O),O = {(x1 ,x2 )j x2 = o, -1 ~ x 1 ~ -~} 

* Sb(E),O = {(-1,-E)} for all E > 0. 

* Therefore S is not lower semicontinuous (with respect to b) in b(0). b,o 

3. Example. (g. linear for all j, -f (strictly) convex, S compact, 
* J b 

but Sb not linearly upper semicontinuous). 
,o 2 2 

fig. 1 

Let Din R be the region x2 + x 1 ~ 0 

Let f: ~2 ~ R be the function defined 

by f(x) = -d(x), where d(x) is the distance 

of (x1,x2 ) to D. Then -f is a convex 

function because Dis a convex region. 

(cf. the lemma below). 

Let g1(x) = x1 , g2(x) = -x 1, g3(x) = x2 , g4(x) = -x2 and let b(0) and b(s) 

be the vectors (1,1 ,1,0) and (1,1,1,E). The feasible regions Sb(E) 

are the boxes 

and the solution sets of max f(x) subject to x E Sb(E) are 
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{(0,0)} 

Therefore 

* 
where p(z,Sb(o),o) is * the distance of z to Sb(o) ,o and as llb(o) - b(E) II = E 

* it follows that S b.o 
is not linearly upper continuous in b(o). 

n 
4. Lemma. Let C be a closed convex subject of IR and let d(x) denote the 

distance of x E Rn to C. Then d: ~n ➔ Risa convex function. 

Proof. Let x) y E IRn and let a and b in C be points such that /Ix-al/ = d(n), 

II y-b II = d(y). Let z be a point 

z =AX+ (1-A)y, 0 <A< 1. 

Let w be the point on the line 

through a and y obtained by 

intersecting this line with 

the line through z parrallel 

to the line through x and a. 

Let c be the point on the line 

through a and b obtained by 

intersecting this line with 

X z 

w 

fig. 2 

the line through w parrallel to the line through y and b. Then 

flz-~11 = Ad(x) and flw-cll = (1-A)d(y) 

and as c is a point of C (C being convex) we have that 

d(z) .:_ llz-cll .:_ !lz-wll + llw-cll = Ad(x) + (1-A)d(y) 

5. Example. (-f (strictly) convex, Sb compact and uniformly linearly 
* continuoust but for all 0 < E < 1, S not linearly upper semicontinuous). 

- - b,E 
The function f of this example is the same as the function fin 

Example 4. There are five restriction functions 

g1 (x) = min(x2-x1+3,-x2 ) i.(.l) 

g2(x) = x2 

g3(x) = -x1 3 

g4(x) = x1 
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g5(x) = r(I lx-(Or6)1 I), where r is a function of one variable like 

the one sketched in fig. 3. 

Let b(£,0) be the vector (-£,2,1,1,0). In fig. 4 below the 

region of x E R2 satisfying g.(x) .::_ bi(£,0) for i = 1,2,3,4 is sh4dei 
and the region of x E R2 satisfying g(x) < b(£,0) is 

crosshatched. The dotted line are the points where f(x) = -£. 
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Now let 

-~ b(e:,c) = (e:(4c+1) -c,2,J,J,O} 

* The sets S ( ) are now equal to b s,c ,s 

* S =AU {(O,e:)} b(s,O),e: 

s* = A U T 
b(s,c),s 

where Tis the shaded region in fig. 5 below, Mel. A-= 1,x,dl\l Ut-/o~)h f 1 }. 

' 
• t 

I 

• ! 

fig. 5 

(x(c),e:-c') 

. • . 

* * The point of Sb(e:,c),e: furthest away from Sb(e:,O),s is the point 

(x1(c), s-c') where 

1 1 1 1 

x (c) = c 2 + 2sc 2 (1+4c)- 2 and c' = c + s(1-(4c+1)- 2 ) 
1 

( . 2 . ) The poi~t of the parabola x2= -x1 closest to (x 1(c), e:-c' is the 

point (c 2 ,-c)). / (~o s:(e,o),E) 1 

The distanc~(x1(c), e:-c'µ~s therefore> c 2 • The distance between 

b(e:,c) and b(e:,O) is 

1 

c + d 1-(4c+1 )- 2 ) 



.. 
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It follows that 

* 
. p((x(c),e-c'), Sb(e o) £) 

lim ' ' = 00 i lb(e,c)-b(e,o) 11 
c➔o 

and therefore S is not linearly upper semicontinuous in b(e,o). b,e 

1. M.H. Stern, 
D.M. Topkis 
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