ERASMUS UNIVERSITEIT ROTTERDAM ECONOMETRISCH INSTITUUT

Report 7411/M,0

THREE (COUNTER) EXAMPLES CONCERNING (LINEAR) CONTINUITY OF SOLUTIONS TO PROGRAMMING PROBLEMS

by M. Hazewinkel

THREE (COUNTER) EXAMPLES CONCERNING (LINEAR) CONTINUITY OF SOLUTIONS TO PROGRAMMING PROBLEMS

by M. Hazewinkel

We consider programming problems: maximize f(x) subject to $g(x) \leq b$, where f is a function $\mathbb{R}^n \to \mathbb{R}$, g a function $\mathbb{R}^n \to \mathbb{R}^m$ and b an m-vector. (a $\leq b$ for m-vectors is taken to mean $a_j \leq b_j$ for all j). One defines

$$S_{b} = \{x \in \mathbb{R}^{n} | g(x) \leq b\}$$

$$S_{b,o}^{*} = \{x \in \mathbb{R}^{n} | x \in S_{b} \text{ and } f(x) = \max_{z \in S_{b}} f(z)\}, \text{ the solution set,}$$

and for given $\epsilon \geq 0$.

$$S_{b,\epsilon}^* = \{x \in \mathbb{R}^n | x \in S_b \text{ and } f(x) \ge -\epsilon + \max_{z \in S_b} f(z) \}, \text{ the } \epsilon\text{-solution set.}$$

One is interested in upper and lower semicontinuity and linear upper and lower semicontuinity of S_b , $S_{b,o}^*$ and $S_{b,\varepsilon}^*$ as b varies.(Linear semicontinuity is defined below). The setting and motivation for the examples below is provided by [1]. These examples answer (in the negative) all the questions on page 26 of [1].

1. <u>Definition</u>. A set valued function $S \mapsto T_S$ from $S \subset \mathbb{R}^m$ to the power set of \mathbb{R}^n is said to be linearly upper semicontinuous at $S \in S$ if there exist $\delta > 0$ and K > 0 such that

$$\rho(z',T_s) \leq K||s-s'|| \text{ for all } z' \in T_s, \quad s' \in S, \ ||s-s'|| < \delta.$$

The function $s\mapsto T_s$ is said to be linearly lower semicontinuous at $s\in S$ if there exist $\delta>0$ and K>0 such that

$$\rho(\,z\,,\!T_{_{\rm S}},\,)\,\leq\,K\,|\,|\,s\,-\,s\,'\,|\,|\,\,\,{\rm for\,\,all}\,\,z\,\in\,T_{_{\rm S}},\,\,s\,'\,\in\,S,\,\,|\,|\,s\,'\,-\,s\,|\,|\,\,<\,\delta$$

These definitions are taken from [1]. The symbol $|\cdot|$ || is the usual norm on \mathbb{R}^m and $\rho(z,T)$ is the distance of $z\in\mathbb{R}^n$ to $T\subset\mathbb{R}^n$, i.e.

$$\rho(z,T) = \inf_{t \in T} ||z-t||.$$

2. Example. (g linear for all j, -f convex, S compact but S not lower semicontinuous).

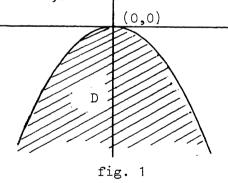
In \mathbb{R}^3 with coordinates (x_1, x_2, x_3) let P be the parabola $x_1 = -1$, $x_3 = -x_2^2$. Let Q be the surface obtained by drawing all the lines joining the origin in \mathbb{R}^3 to a point of P. Let $(f(x_1, x_2))$ be the function defined by the surface Q. The function f is welldefined on the open halfspace $x_1 < 0$, and -f is clearly convex. It is not difficult to write down a formula for f.

Now let $g_1(x_1,x_2) = x_1$, $g_2(x_1,x_2) = -x_1$, $g_3(x_1,x_2) = x_2$, $g_{\downarrow}(x_1,x_2) = -x_2$, and let b(o) be the vector $(-\frac{1}{2},1,0,1)$ and $b(\varepsilon)$ the vector $(-\frac{1}{2},1,-\varepsilon,1)$. Then $S_{b(\varepsilon)} = \{x \mid g(x) \leq b(\varepsilon)\}$ is the box $\{(x_1,x_2) \mid -1 \leq x_1 \leq -\frac{1}{2}, -1 \leq x_2 \leq -\varepsilon\}$ and ysolution sets $S_{b(\varepsilon)}$, of max f(x), subject to $g(x) < b(\varepsilon)$, are equal to

$$S_{b(0),0}^{*} = \{(x_{1},x_{2}) | x_{2} = 0, -1 \le x_{1} \le -\frac{1}{2}\}$$
 $S_{b(\epsilon),0}^{*} = \{(-1,-\epsilon)\} \text{ for all } \epsilon > 0.$

Therefore $S_{b,0}^*$ is not lower semicontinuous (with respect to b) in b(0).

3. Example. (g linear for all j, -f (strictly) convex, S_b compact, but $S_{b,o}$ not linearly upper semicontinuous).



Let D in \mathbb{R}^2 be the region $x_2 + x_1^2 \le 0$ Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by f(x) = -d(x), where d(x) is the distance of (x_1, x_2) to D. Then -f is a convex function because D is a convex region. (cf. the lemma below).

Let $g_1(x) = x_1$, $g_2(x) = -x_1$, $g_3(x) = x_2$, $g_4(x) = -x_2$ and let b(0) and $b(\epsilon)$ be the vectors (1,1,1,0) and $(1,1,1,\epsilon)$. The feasible regions $S_b(\epsilon)$ are the boxes

$$S_{b(\varepsilon)} = \{x | g(x) \le b(\varepsilon)\} = \{(x_1, x_2) | -1 \le x_1 \le 1, -\varepsilon \le x_2 \le 1\}$$

and the solution sets of max f(x) subject to $x \in S_{b(\epsilon)}$ are

$$S_{b(0),0}^{*} = \{(0,0)\}$$

$$S_{b(\epsilon),0}^{*} = \{(x_{1},x_{2}) | x_{2} + x_{1}^{2} \le 0, -\epsilon \le x_{2} \le 0\}$$

Therefore

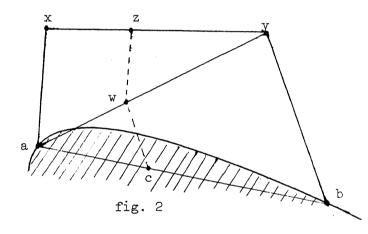
$$\max_{z \in S_{b(\varepsilon),o}} \rho(z,S_{b(o),o}^*) = (\varepsilon + \varepsilon^2)^{\frac{1}{2}},$$

where $\rho(z, S_{b(0), o}^*)$ is the distance of z to $S_{b(0), o}^*$ and as $\|b(o) - b(\varepsilon)\| = \varepsilon$ it follows that $S_{b, o}^*$ is not linearly upper continuous in b(o).

4. Lemma. Let C be a closed convex subject of \mathbb{R}^n and let d(x) denote the distance of $x \in \mathbb{R}^n$ to C. Then $d: \mathbb{R}^n \to \mathbb{R}$ is a convex function.

<u>Proof</u>. Let $x, y \in \mathbb{R}^n$ and let a and b in C be points such that ||x-a|| = d(n),

 $\|y-b\| = d(y)$. Let z be a point $z = \lambda x + (1-\lambda)y$, $0 \le \lambda \le 1$. Let w be the point on the line through a and y obtained by intersecting this line with the line through z parrallel to the line through x and a. Let c be the point on the line through a and b obtained by intersecting this line with



the line through w parrallel to the line through y and b. Then

$$\|z-w\| = \lambda d(x)$$
 and $\|w-c\| = (1-\lambda)d(y)$

and as c is a point of C (C being convex) we have that

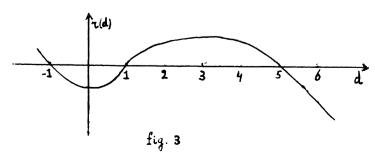
$$d(z) \le ||z-c|| \le ||z-w|| + ||w-c|| = \lambda d(x) + (1-\lambda)d(y)$$

5. Example. (-f (strictly) convex, S_{b} compact and uniformly linearly continuous, but for all $0 \le \epsilon \le 1$, $S_{b,\epsilon}$ not linearly upper semicontinuous).

The function f of this example is the same as the function f in Example 4. There are five restriction functions

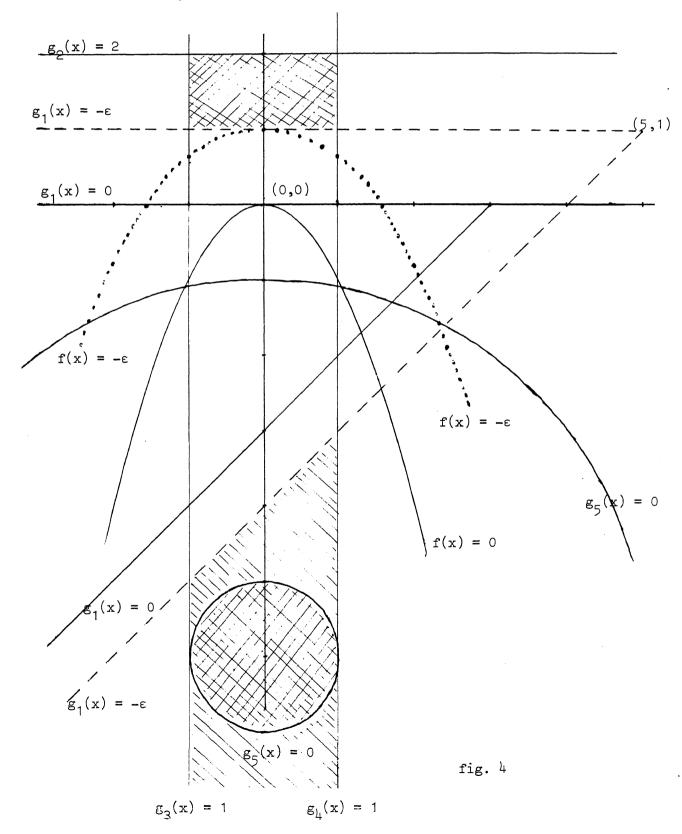
$$g_1(x) = min(x_2-x_1+3,-x_2)$$

 $g_2(x) = x_2$
 $g_3(x) = -x_1$
 $g_4(x) = x_1$



 $g_5(x) = r(||x-(0,6)||)$, where r is a function of one variable like the one sketched in fig. 3.

Let $b(\epsilon,0)$ be the vector $(-\epsilon,2,1,1,0)$. In fig. 4 below the region of $x \in \mathbb{R}^2$ satisfying $g_i(x) \leq b_i(\epsilon,0)$ for i=1,2,3,4 is shaded and the region of $x \in \mathbb{R}^2$ satisfying $g(x) \leq b(\epsilon,0)$ is crosshatched. The dotted line are the points where $f(x) = -\epsilon$.



Now let

$$b(\varepsilon,c) = (\varepsilon(4c+1)^{-\frac{1}{2}} - c,2,1,1,0)$$

The sets $S_{b(\epsilon,c),\epsilon}^*$ are now equal to

$$s_{b(\varepsilon,0),\varepsilon}^* = A \cup \{(0,\varepsilon)\}$$

$$S_{b(\varepsilon,c),\varepsilon}^* = A \cup T$$

where T is the shaded region in fig. 5 below, and $A = \{x \in \mathbb{R}^2 \mid \|x - \{c_i b\}\| \le 1\}$.

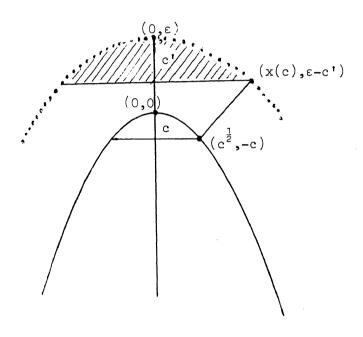


fig. 5

The point of $S_{b(\epsilon,c),\epsilon}^*$ furthest away from $S_{b(\epsilon,0),\epsilon}^*$ is the point $(x_1(c), \epsilon-c')$ where

$$x_1(c) = c^{\frac{1}{2}} + 2\epsilon c^{\frac{1}{2}} (1+4c)^{-\frac{1}{2}}$$
 and $c' = c + \epsilon (1-(4c+1)^{-\frac{1}{2}})$

(The point of the parabola $x_2 = -x_1^2$ closest to $(x_1(c), \epsilon-c')$ is the

point $(c^{\frac{1}{2}},-c)$). (to $S_{b(\epsilon,0),E}^{*}$)

The distance $(x_{1}(c), \epsilon-c')$ is therefore $\geq c^{\frac{1}{2}}$. The distance between $b(\epsilon,c)$ and $b(\epsilon,0)$ is

$$c + \epsilon (1-(4c+1)^{-\frac{1}{2}})$$

It follows that

$$\lim_{c \to 0} \frac{\rho((\mathbf{x}(c), \varepsilon - c'), S_{b(\varepsilon, 0), \varepsilon}^{*})}{||b(\varepsilon, c) - b(\varepsilon, 0)||} = \infty$$

and therefore $S_{b,\epsilon}$ is not linearly upper semicontinuous in $b(\epsilon,0)$.

REFERENCES

1. M.H. Stern, Rates of stability in nonlinear programming. D.M. Topkis