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by M. Hazewinkel

We consider programming problems: maximize f(x) subject to g(x) < b,
where f is a function R" - R, g a function R” > B” and b an m-vector,

(a < b for m-vectors is taken to mean aj f-bj for all j). One defines

s, = {x € R"|g(x) < b}

b
* n .
8, o = {x ER|x € 8, and f(x) = max f(z)}, the solution set,
20 Z€S
b
and for given e > O.
% n .
5, = {x €R |x € 8, and f(x) > - € + max f(z)}, the e-solution set.
»€ Z€S
b
One is interested in upper and lower semicontinuity and linear upper
. .. * * . . . ..
and lower semicontulnity of S_, Sb and S as b varies.(Linear semicontinuitj
b Ne) b,e

is defined below). The setting and motivation for the examples below is
provided by [1], These examples answer (in the negative) all the questions

on page 26 of [1].

1. Definition. A set valued functiongér;ms> from SCE® to the power set of
R” is said to be linearly upper semicontinuous at s € S if there exist

§ >0 and XK > 0 such that

p(z',TS) < K||s-s'|| for all z' € To» s' €S, [|s-s'|| < 8.

The function s+ TS is said to be linearly lower semicontinuous at s € S

if there exist § > 0 and XK > 0 such that
p(z,TS,) < K||s-s'|| for all z € T.» s' €8, ||s'-s|| <&

These definitions are taken from [1]. The symbol || || is the usual
m - . -
norm on R and p(z,T) is the distance of z € R® to T < R", i.e.

o(z,T) = infl[z~t||‘
t€T

%k
2. Example. (gj linear for all j, -f convex, Sb compact but Sb o not lower
2

semicontinuous).
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In R™ with coordinates (x],xz,x3) let P be the parabola x, = -1,

X, = —x2 Let Q be the surface obtained by drawing all the lines joining

tie orizin in B3 to a point of P. Let (f(x1,x2) be the function defined
by the surface Q. The function f is welldefined on the open halfspace
x, < 0, and -f is clearly convex. It is not difficult to write down

a formula for f.

Now let g1(x1,x2) = XT’ gg(x1,x2) = -X1, g3(x1,x2) = X2a

gh(x1,x2) = -x,, and let b(o) be the vector (-2,1,0,1) and b(e) the vector
(-3,1,-€,1). Then S = {x|g(x) < ble)} is the box

b(::) - \g(js,!) . *
{(x1,x2)| -1 < xy <-z2, -1 <%, <-e} andYsolution sets Sb(e),O of

max f(x), subject to g(x) < b(e), are equal to
*

Sb(O),O = {(x1,x2)l x, =0, -1 < x; £ -3}

0l

{(-1,-€)} for all € > 0.

b(e),0

b 3
Therefore S, is not lower semicontinuous (with respect to b) in b(0).
5

3. Example. (gj linear for all j, -f (strictly) convex, Sb compact ,

*
but Sb o hot linearly upper semicontinuous).
]

Let D in R2 be the region X5 + x? <0

Let f: B2 > R be the function defined

by f(x) = -d(x), where d(x) is the distance
of (x1,x2) to D. Then -f is a convex
function because D is a convex region.

(ef. the lemma below).

Let g1(x) =X, ge(x) = -x,, g3(x) = X, gh(x) = -x, and let b(0) and b(e)
be the vectors (1,1,1,0) and (1,1,1,e). The feasible regions sb(e)

are the boxes

o(e) = Bl p(e)) = L] 1< x <1, e <xp < )

and the solution sets of max f(x) subject to x € Sb(e) are



Sb(O),O = {(O:O)}
* 2
Bp(ey,0 = (xpxdl xp + %7 <0, - < x, < 0}
Therefore
* ) %
max, p(z,Sb(o) o) = (e+e”)° ,
b
Zesb(e),o
> i i fztos d as ||b(o) - v(e)]
where D(Z’Sb(o),o) is the distance of z to b(0),0 and as o) = b(e)|l = ¢

* . -
it follows that Sb o is not linearly upper continuous in b(o).

L. Lemma. Let C be a closed convex subject of R" and let d(x) denote the

distance of x € R™ to C. Then d: R® - R is a convex function.

Proof. Let x, y € R" and let a and b in C be points such that ”x—a" = d(n),
ly-v]| = a(y). Let z be a point x 2
z =2Ax + (1-2)y, 0 < X < 1.

Let w be the point on the line
through a and y obtained by
intersecting this line with
the line through z parrallel
to the line through x and a.
Let ¢ be the point on the line
through a and b obtained by

intersecting this line with

the line through w parrallel to the line through y and b. Then

flz-w|| = 2d(x) and [[w—c|| = (1-))a(y)
and as ¢ is a point of C (C being convex) we have that

a(z) j_”z—c“ < ”z—w" + Hw—cn = Ad(x) + (1-1)d(y)

5. Example. (-f (strictly) convex, 8, compact and uniformly linearly
*

continuous, but for all 0 < e < 1, S not linearly upper semicontinuous).

b,
The function f of this example is the same as the function f in

Example 4. There are five restriction functions

81(X) = min(xe—x1+3,—x2) Pid)

ge(x) Xy

. N |
gy(x) = -x, N A T 3 ¢

gh(x) X1

L)

1




gs(x) = r(||x-(0s6)]|), where r is a function of one variable like
the one sketched in fig. 3.
Let b(e,0) be the vector (-€,2,1,1,0). In fig. 4 below the
region of x € R° satisfying g.(x) i_bi(e,o) for i = 1,2,3,4 is shaded
and the region of x € R® satisfying g(x) < b(e,0) is

crosshatched, The dotted line are the points where f(x) = -e.




ave

Now let
1
b(e,C) = (E(uC+1)_2 —C,2,],],O)

%
The sets Sb are now equal to

(E,C),E
st = 4 U {(0,e)}
b(e,O),E - u { 2 €
*
Sb(e,c),s =AUT

] 2 )
where T is the shaded region in fig. 5 below, and A : Jae R [ 1o (el 51}-_

O £)
‘;5'-

'442éa%i» /é;/ /Zﬂ/ x(c),e-c')

(0,0)

fig. 5

* . .
The point of S be,c),e furthest away from Sb(e,O) c is the point
2

(x,(c), e=c') where

1

[V
Nof—

1
x1(c) = ¢c? + 2ec

)

(144c)™2 and c' = c + e(1-(he+1)™

5~ —x? closest to (x1(c}, g-c') is the

:
1 *
int (c®,-c)).
poin (C s C)) ﬁ/ kO Sbu;ﬂ,zi 5 .
The distance (x1(c), e-c')1is therefore > c?. The distance between

b(e,c) and b(e,0) is

(The point of the parabola x

c + e(]—(hc+1)_%)



.

It follows

and therefore Sb

1. M.H. Stern,
D.M. Topkis

that

*
- ol(x(e),e-c'), Sb(e,o)’e)
1 TTole,c1-0(e,0) ] =

. is not linearly upper semicontinuous in b(e,0).

b a
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