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1. INTRODUCTION

In this short note we present some complements to the constructions
of [3,4,5]. In 83 we first show how the Witt vectors (of length n)
associated to a prime p fit into the framework of [3], and then in §4
how the generalized Witt vectors (cf. [1] and [7]) fit into the
constructions of [4]. This "requires" a rather special choice of the
constants n(q1,...,qt,d) € Z which go into the definition of a
universal n-dimensional commutative formal group. (Cf. (2.3)).

Choose a prime number p, and let A be a commutative Z(p)—algebra.
Let G be a commutative n-dimensional formal group over A. A curve
in G (cf [2]) is simply an n-column-vector of power series in X over
A without constant terms. Curves can be added using the formal group
law G(X,Y) and in addition one has operators [a] for a € A, R

Vn(= Verschiebung) for n = 1,2,... and F (= Frobenius) for n = 1,2,...

The curves ¢ such that Fq ¢ = 0 for all q # p constitute a subgroup

CP(G), which is a left-module over a certain noncommutative topological
ring Cart{P}(A). (cf. [2], [6] and §5). Every element of Cart{p}(A) can be
uniquely written as a sum I Vl[cij]FJ. Now let G(X,Y) be a p-typical

i, _P b

group law (over a Z(p)-algebra every group law can be brought into
p-typical form), and let Y; be the curve Yi(x) = (o,...,x,o,...o)t,

X in the i-th place. Then it is easily seen that every element of CP(G)

*) Part of the work for this note was done while the author enjoyed a
CNRS grant for a month's stay at the I.H.E.S. in Bures sur Yvette
(Winter 1972). @IBLIOTHEEY, 112 THIMATISCH CENTRUN
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@ n .
can be written uniquely as a (convergent) sum % g Vl[a..]y..
i=1 j=1 P 1J

Cartier's classification theory (local case) says that there is
an isomorphism of categories between the category of commutative formal
A
{p}( )

groups over A and the full subcategory of modules of continuous Cart

left-modules with this basis property.(Cf. [2] and [6]).

To specify the Cart{p}(A)—module structure of CP(G) it suffices

© .
to write F y. as a sum 3 I V'[a. ly,. In §5, 6 we do this for the
p'i s, . P 1877R -
1=1 J=1
case that G is a formal group obtained by specializing the p-typically
universal formal group G, of [3]. (Cf. (2.2) for its definition; all

T
isomorphism classes of formal groups over Z(p)—algebras are obtained

in this way).
If G over A is obtained by substituting ti(jk) voor the Ti(jk)
of GlIl then the formula for FpYi becomes

o]

n
Fy. = I I Vo[t (8,i
P =1 pl Fmry (8117

Inversely therefore, given a Cart{p}(A) module M of the right kind,
the constructions of [3] provide one with a formal group G such that
C_(G) = M.

p( )

2. RECAPITULATION

In this section we have collected the results from [3,4,5] which

will be needed in the sequel.

(2.1) Local one Dimensional Case.

Choose a prime number p. Let gT(X) be the power series over

Q[T1, T2,...] = Q[T] defined by
Ti ( 1) 1
(2.1.1) gp(X) = X + 12t g (X°)

i
where gép )(X) is the power series obtained from gT(X) by replacing

1
the parameters T,, j = 1, 2,... by T§ s i =1, 2,.... Write




) i
2.1. = P
(2.1.2) 8T(X) § a.X
i=o
Then we have (cf.[3])
J Jot...®] _
T T? T, T? ! k-1
(2.1.3) a =1, a = z —= i
31+. .+Jk=n b
We define
_ =1
(2.1.4) Gp(X,Y) = g7 (g(X) + gq(¥))

Then GT is a formal group over Z[T1,T2,...] = Z[T], and if A 1s a
commutative (unitary).ZPQélgebfa, and if
.G is a one dimensional commutative formal group over A, then there

exist tl’ t2,... € A such that G is strictly isomorphic to Gt where.
Gt is obtained from GT by substituting tj for Tj’ J=1,2,3, «.. »

Further let g, S(x) over Q[T,S] be defined by
H

= S I e
(2.1.5) gT,S(X) =X+ I 8 X + -E 3 61,5 (x* )
1=1 =1
Then one has (cf[3,5]): .
2 91 pdiT Tk
T. % . .
(2.1.6) &r S(x) =X+ LI " X
> SPPRREIN IS P
. . ) e
pd1 pt1 T Ik pd 1T Tk
I R, S: PR
. d1 92 Ik Ik P k
T o - k-1
31,---,JK€N P
Let
) 6 (X,Y) = gn (g «(X) + &g (¥))
(2-1-7 T,S E] T,S T,S T,S
then GT s is a formal group over Z[T,S], and is isomorphic to GT. Moreover
b

if A is an integral domain then Gt and Gt' are strictly isomorphic over
A if and only if there exists a sequence s = (51’52"“) of elements

of A such that G, (X,Y) = Gy (X,¥) (or g (X) = g1 (X))




2.2. Local more Dimensional Case.

Again choose a prime number p, and let T, = (Ti(jk))jk be an
n x n matrix of indeterminates for each i= 1, 2, ... . We define

the column n-vector of power series g (X,,...,X ) over Q[..., T.(jk),...]
Eply n i

by
o iy i
t
(2.2.1) Bp(XyseeenX ) = (XysneesX )" # z —i-g(P )(XP ,...,xﬁ )

, i
where (xl,...,xn)t is the column vector of the X, and gép )(xl,...,xn)

is obtained from gT(X ..,Xn) by replacing all Tm(jk) by their pT—th

1°°
powers (m = 1,2,...3 J = 1,...,03 kK = 1,...,0).

Writing
© i i
- P P 3t
(2.2.2) gT(X1,...,Xn) izo ai(x1 TR o )

where now a, is an n x n matrix one has (ecf. [3])

J J .
p, ol 1) | p(PUireHgy )

3,3 j
(2.2.3) a =I,a. = % 1°2 - k
J1+...+Jk=1 P

2 £
S is the matrix ((T n(jk))p )jk' Now define

n

where T

(2.2.4) GT(X1,...,Xn; Y1,...,Yn) = g51(gT(x1,...,xn) + gT(Y1,...,Yn))
then Gy, is an n x n formal group over Z[..., Ti(jk),...], and if A is
a commutative ring with unit element such that every prime number

q # p is invertible in A then every n-dimensional formal group over A
is isomorphic to a Gt’ obtained from GT by substituting suitable
ti(jk) for T;(jk).

2.3. Global more Dimensional Case.

Let ej be the n-multiindex e, = (0ye..50,1,0,...,0), the 1 in the
J-th place.

We define

Q&J)Y:ﬁ:(%“”ﬁg]%GNU{M,d#wv“defquw
J
all prime numbers p, j = 1,...,n and r = 1,2,...}



For each 4 e'?ﬁ a# ej; J=1,...,n let Sd be the column vector of .

indeterminates S, = (sd(1),...,sd(n))t and let S§_ = eg = (0,...,0,1,0,...0)
J

for j = 1,...,n; further let Tq be the n x n matrix of indeterminates

(T (Jk))., for all prime powers gq.
q Jk
Let s = (51"°"Sn)’ s; € N U {0} be any multiindex. An ordered

factorization of s is a sequence (q1,...,qt,d) where a; is a prime power

and 4 is a multiindex from T such that q],...qtd = s. We now define

for each multiindex s the columnvector ag by the formula

( FICIC ) ,d) ( sd)
(2.3.2) a = I 4 L D
s (qls--'ﬁqtsd) p] pt
( - -
- a,) T(q1 <1,0_1)S(q1 ;)
4 9 %, d

where the sum is over all ordered factorizations of s; p

T(r)
qQ

; is a prime
number such that q. is a power of p;s is the matrix (Tq(jk)r)jk

and Séq) is the column vector of entries Sd(i)q. The n(q1,...,qt,d)

are any set of integers satisfying the conditions:?
if P, # P, = .- =D, # P, then n(qT,...,qt,d) Z 1 mod p,

0 mod pZ‘T

1

and n(q1,...,qt,d)
(2.3.3) '

. _ r
»1f P, = ... =D, # P,..,then n(q1,...,qt,d) = 1 mod D,

(If r = ¢, take p

r+] = 80Y Prime number # Pr)

(Such integers exist). Now let g(X1,...,Xn) be the column-n-vector

of power series defined by

s1 sn
(2.3.4) g(X1,...,Xn) = Zasx1 oo X

s n

(s

where s runs through the multiindices s
s # (0,...,0).

1,...,sn), s; €N U {0},

We define

(2.3.5) G(X

1
o

1""’Xn; Y]""’Yn) =



then G is a universal n dimensional commutative formal group over
Zl..., Tq(jk),...; cees Sd(i),...]

3. WITT VECTORS ASSOCIATED TO A PRIME p.

The formal group of Witt vectors of length n associated to a
prime p is a p-typical formal group over any commutative ring with
unit element A. There for it must be isomorphic to some formal group

G, » ti(Jk) € A where G

this Witt formal group is p-typical it must be equal to some such Gt)'

is the formal group of (2.2). (In fact because

3.1. Witt Vectors.

Choose a prime number p. The Witt polynomials are then

2, (%)) = X,
0. (X,,X.) = pX. + X2
(3.1.1) 2v* %2 2 1
) 1 n-2_p Pn—2 Pn-1
@ngx1,x2,...,xn) =p X +tp Xt ...t DPX; + X5

The polynomials Si(X1,...,Xi; Y1""’Yi)’ i=1,2,...,n defined by

(3.1.2) @i(s1,..,,si) = @i(x ,Xi) + @i(y1,...,xi)

1200

have coefficients in Z, and define a formal group of dimension n over

any commutative ring with unit element A.

3.2. Specification.

Let ti(jk) i=1,2,...35J=15...,03 k = 1,...,n be defined by

ti(j,k) =0if i >2; j=1,...,n3 k=1,...,n
(3.2.1) tj(j,k) = 0 unless j = k + 1
t.l(k+1,k) = 1 k = 1,-.-,1’1—1

I.e. the matrices ti are equal to



7
0 .« 0
1 . '
. O - . .
(3.2.2) t, =1 < ~0)] ,t,=0,... ,t_ =0, .
1 0 010 2 n

3.3. Proposition.

Let Gt be the formal group obtained from the n-dimensional
formal group Gy of (2.2) by substituting ti(jk) for Ti(jk) where the
ti(jk) are defined by (3.2.1). Then Gy is the group of Witt vectors

of length n associated to the prime p.

Proof. Because both Gt and the formal group of Witt vectors of length
n associated to p are defined over Z it suffices to prove this for
A= 7. '

According to (2.2.3) adn (2.2.L4) the logarithm of G, is equal to

t
i-1
® pi . t1.t§p)...t§p )
(3.3.1) 1log Gt(Xj,...,Xn) = -g ai(x] see X ), a; = T
i=o P
i
) (tl)
i
P
I.e.
y
Xy
1,9
,.l,. —
X o X )
1.0, 1.7
X+ = xP + ==x
3.3.2 log G (X.,...,X ) = 2
( ) g t( : X ) 3 p 2 5 1 |
» ’
n-1 /
1p 1 p /
Xt P ‘et T n-1X1 /

But according to (3.1.1) and (3.1.2) this is exactly the logarithm of

the formal group of Witt vectors of length n associated to p.

L. GENERALIZED WITT VECTORS

The formal group of generalized Witt vectors of length n

(ef. [11, [7]) is a formal group over any commutative ring with unit



element A. It must be therefore be equal to some formal group obtained
from the formal group G of (2.3) by suitable substitutions for the
Tq(jk), q a prime power, and Sd(i), adeT~ {el,...,en}.

It turns out to be convenient to choose the n(q],...,qt,d)

in a rather special way (cf. 4.3) below).

L4.1. Generalized Witt Vectors.

The generalized Witt polynomials are

(L4.1.1)

d|n

D N 4

The polynomials Si(X]"' s

,...,Yi) defined by

(4.1.2) N CHRPC I I Z1C STTTRS S LENC SISPNN )

have their coefficients in Z and define a formal group of dimension
n over any commutative ring with unit element A.

(4.2) Let Pys---sP, be a sequence of prime numbers, p, < p, <...< p_.

Let J(p§1,...,pZS) be the set of all sequences (p%,...,pé) such that

pi & ipT,...,ps}; for all i, n = Ty + ...+ ros and su;h that Ei oceurs

- s 1 1] 1 1 e s
exactly . times in (p1,...,pn). If (pj,...,pn) € J(pll, P ) we
also write J(p;,...,pg) = J(pﬁl,...,pgs); For example

3(2%,3) = {(2,2,3), (2,3,2), (3,2,2)}
J(2,3,5) = {(2,3,5), (2,5,3), (3,2,5), (3,5,2), (5,2,3), (5,3,2)}.
(4.3) Lemma.

There exist integers ﬁ(p%,...,p&), for all sequences of primes

(P%,--‘,pi) such that

a. If p} # Py =-.-= Dy #vp£+1, (r <m, take p;+1

I
g
<

prime # p, if

r = m)then ﬁ(p{,...,pﬁ) = 1 mod p; and E(p{,...,p') 0 mod(pé)r'T

n
5
<

Ve ! = = ! ' 1 : v
b. If P{ =Py =---= Py # Pli1> (r < m, take P41 prime # p o i

r = m) then ﬁ(p%,...,p&) =1 mod(P{)r-



9
I'1 r
c. For all J = J(p1 ,...,pss) one has
b n(pis-- By )alphs. . oopy) . Ay gap)alpy) = 1

1 1
(Pl""’pm) €J

Proof. We use induction on m. For m = 1 let n(p') = 1 for all prime
numbers p'. Suppose we %ave defined n for all sequences of primes of

length < m. Let J = J(pji,...,pss), T+ ...+r =mop <p, < ...<p

1 s

prime numbers. Then

A [ [ ' 1 oy ' 1\ 5 1) =
(P'Z o) € s n(p1,--~,pm)n(P2,---,pm) --- nlpy_yspp)n(p)
LN 1)
= (p§ o) €3 ﬁ(p{,-.-,pi)ﬁ(pé,---,pi)---ﬁ(pé_1,pé)ﬁ(p$) + ..
Yseeesp!
| -
P1=Py
(4.3.1)
+ (o z ) e Jﬁ(p{,~--,p£)ﬁ(Pé,---,pé)---ﬁ(pﬁ_j,pi)ﬁ(pg)
Jseeesn)
1 —
Py TPy

Now for each 1 1,2,...,8 let 0(i) be the sequence in J

(k.3.2) o(i) = (p.,...,pi, Pi4q2 oPiqqoe oD

s s,...,ps,p1,...,p1,....,

We define

Tt 1y = 3 ; . (-
(L.3.3) n(py,...>py) = n(o(i)) if Py = D5
where the n(o(i)) are still to be determined. Then using (4.3.1) we see
that

(4.3.4) z A(pl,-wspl) +o. B(p!) =

(pfs...sp)) €7 i

n(o(i))
1

i ™M wm

Now let r = max ri. We define
i




10
r-1
- (p;-1)p;
n(g(i)) = (I pj) i=1,...,8-1
J#i
(4.3.5) _ -1
n(o(s)) =1 - & n(o(i))
1=1
(N.B. if s=1, take n(0(1)) = 1). Then for i = 1,...,s-1
_ r. p.-1
n(o(i)) = 1 mod pil because pjl = 1 mod p, for all j#1i, and r > r.
r. 1
n(o(i)) = 0 mod ij for j # i because p;, >r Z_rj
and for i = s we have
_ T , _ r
n(o(s)) = 1 mod psS because n(o(i)) = 0 mod pss for all i # s.
_ r, _ r.
n{o(s)) = 0 mod ij for j # s because n(o(i)) = 0 mod ij for all j # i,s
r.
J

and n(o(j)) = 1 mod p;°-

It follows that the n defined by (L4.3.3) and (L4.3.5) satisfy the
conditions a), b), c) of (4.3).
g.e.d.

(4.4) Specification.

We define tq(i,j) and sd(i) as follows

0 if q is a prime power but not a prime number

t4(1.3)

tp(i,j) = 0 unless i/j = p

tp(i,j) tifi/j=p 3 i, J € {1,...,n}
sd(i) =0 for all d € '~ {e1,...,en}, i=1,...,n

(4.5) Proposition.

Take n(qj,...,qt,d) = ﬁ(p1,...,pt) if q; is a power p, in the
definition of the formal group G of (2.3) (where the n are as in lemma
(4.3)). Let W be the formal group obtained from this G by substituting
for the Tq(jk) and Sd(i) the values specified in (L.L4). Then W is the

formal group of generalized Witt vectors of length n.

Proof. According to (2.3) the logarithm of wn is equal to
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(L.5.1) log wn(xl,...,xn) = 2 a X, - n
and using (2.2.3) and (4.4) we see that the column vector a_ is equal
to zero unless the multiindex s is of the form s = mej, for some

m€N, j€{1,...,n}. And then

(4.5.2)
a = I n(pa,.-.’Pi’eiz. e . il'-(-"'I-’"l;"-”'i‘jj"’G ,.t(%i).
me (p{,...,p&)eJ p; pi Py P
(p;---p£_1)e(p; oy)
B O J
where J = J(p:1,...,pz£) if m = p?l...pzl

= t_ for all prime numbers p and all r € N and

Now we have tér)

]
]

m, (a,b € {1,...,n})

(t
(L.5.3)

3 1 1
p1""’tp£)a,b 0 if a/b # pP}---Py

]
]

(' peeeat )

. m
PR

3 = n! '
a.b 1 if a/b py-- Py

Therefore, using n(p; ,...,pi,ej) = E(p',...,pi) and (L4,4) c) we see that

1
the i-th entry amej(l) of amej is equal to

m, a (i) = 0 if i/j # m.

[0}

(4.5.1) amej(i) =m ! i i/;

me.

|
Therefore, as

s s
(4.5.5) log W_(X 5...5%)) = L a X, x "= 3 ame.X?

s me. J
J
we have
Y = 1

(4.5.5) log wn(x1,...,xn)(1) = mﬁi - x?/m

and we see by (4.1.1) and (4.1.2) that log W is equal to the logarithm
of the generalized Witt vectors of length n.
q.e.d.
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5. CARTIER-DIEUDONNE MODULES (local, one dimensional case)

5.1. Definition of QP(G) (ef. 2 )

Let G be an n-dimensional formal group over a ring A. A curve
in G is an n-column-vector of power series in X over A without constant
terms. Two curves CI(X) and c2(X) can be added as follows:

(5.1.1) (e +e,)(X) = ey (X), ey(X))

This turns C(G), the set of all curves in G, into an abelian group.
The subgroupan(G) of curves = 0 mod(X") define a topology on C(G).

The topological group C(G) admits operators [a],
e €A; V. ,n€N,F, n € N which are defined as follows

(5.1.2) ([ale)(X) = e(ax)  (V_e)(X) = (x")

The definition of Fn requires a bit more care. First suppose that A

is an integral domain of characteristic zero and let Cn be a primitive
n-th root of unity.

We set

(5.1.3)  (Fedx) = ([gde + oo+ [ghle)(x/?)

Galois theory shows that the right hand member of (5.1.3) is in fact
a power series over A, and because the right hand side of (5.1.3) is

1/n,, cnx1/n it follows that the

invariant under the substitution X
right hand side of (5.1.3) is in fact a power series in X. To define
the operator Fn over arbitrary rings A one 1lifts both the formal
group G and the curve c to a formal group G' and a curve c' over an
integral domain of characteristic zero A', one calculates Fnc' over A'

and then reduces Fnc' to a curve over A. This reduction is then the

desired Fnc. One has the following relations between the various
operators (cf. [2]). -
(5.1.4) ]+ b]l= 1 V_ s (ab)F

n=1

where the polynomials sn(X,Y) are defined by M+ vt = §oas (X,Y)n/d

dln a

(5.1.5) [al[v] = [ab]
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(5.1.6) VV =V _,FF =F__

(5.1.7) [alv, =V [a"],F [a] = [a"]F_

(5.1.8) If (n,m) =1, FV =VF

(5.1.9) FV, =n Idc(g) » [11=v,=F, = Tdo(g)
where Id

c(g) is the identity on C(G).

Choose a prime number p. A curve ¢ in G is called p-typical if
Fqc = 0 for all prime numbers q # p. The formal group G is called
p-typical if the curves Yyoeees Yy defined by Yi(X) = (0y...,0,X,0,...,0),
X in the i-th place, are p-typical.

Let A be an integral domain, and g(X1,...,Xn) the logarithm of
G. Then

m
— P

. J
1 pJ

(5.1.10) c is p-typical <= g(c(X)) =

R

J

where the mj are n-column-vectors of elements from A.
The p-typical curves in G constitute a subgroup of C(G) which is

denoted CP(G). This subgroup is stable under the operations [al, Vo, F -

5.2. The Ring Cart, .(A) (cf. [2] and [6])

")
Choose a prime number p. The (in general non-commutative)

}

topological ring Cart . ,(A) consists of all expressions

[e2] . .
(5.2.1) x= 3 V; hij]F%
i,J€EN
such that for all i there are only finitely many J such that
aij # 0 (I.e. every element x can be written in a unique way as such
a (convergent) sum. Addition and multiplication in Cart{p}(A) are

defined by the relations

[a] + [b] = I v2s (a,b)F* , where s (X,Y) is defined in (5.1.k4)
=0 P pﬂ P pn
2.2 = ° = ° = = 7,
(5 ) [allb] = [ab], v, =F,=1Id FV =p.Id

[a]v, = vp[apl, Folal = [aP]Fp



1L

where Id is the identity element of Cart{p}(A). The ring is topologized

n

by the subgroups Cart{PSA) consisting of those elements x such that

= iF i< n.

alJ 01f1<n
The operators [a] and FP, Vp defined in (5.1) turn CP(G), the

group of p-typical curves of G into a left (continuous, complete)

module over Cart{p}(A).

Now let A be a commutative ring with unit element such that
every prime number q # p is invertible in A. Then Cartier's
classification theory says that the functor Ge CP(G) is an equivalence
of categories between the commutative formal groups over A and a certain
full subcategory of (complete, continuous) left modules over Cart{p}(A).
(There is also a global version of this theory (cf.[2,6])).

It is the aim of the next few subsections and §6 to calculate
these modules (as modules)in the case that G is a p-typical group over
A (A as before; note that every commutative formal group over A is
strictly isomorphic to a p-typical one).

From now on A is a commutative ring with unit element such that

all prime numbers q # p are invertible in A.

5.3. Let now G be a one dimensional group over A, and y be the curve
v(X) = X. Suppose that G is p-typical. It is clear from (5.1) that
every p-typical curve in G can be written in a unique way as a

(convergent) sum

o0 .
(5.3.1) TV ola.ly
2T M
i=o
(Use (5.1.10) to prove this for, characteristic zero integral domains A,
and then use a lifting argument to prove this for all A).
In particular the curve pr can be written as a sum (5.3.1).
It follows that the modules CP(G) arising from one-dimensional
(p~typical) formal groups over A are of the form.
e o]
X

i
(5.3.2) Cart{p}(A)/Cart{p}(A)(FP - Vp[ai])

1=0

for certain ags Bysees € A

5.4. Lemma.

Let gT(X) be the formal power series of (2.1.1) then
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1 i
gT(X) =X + T gT(T1XP) + ...+ %'gT(TiXp )+ ...

Proof. this is an immediate consequence of (2.1.3).
5.5. Theoren.

Let Gt be the formal group over A obtained from the formal group
Gy of (2.1) by substituting t, for Ti. Then

c (C,) = Cart{p}(A)/Cart{P}(A)(Fp - '§ Vé[t 1)

izo 1+1
as a left Cart{p}(A) module.

Proof. We have to calculate pr. Suppose first that A is an integral

domain of characteristic zero. Then, if gt(X) is the logarithm of Gt’

i-1

P .
- i 1/py p p
(5.5.1) g, (Fy) .z g (0 X7) = g (64X) + g (2X7) + .n + g (6,07 ) +..

=1

according to lemma (5.4). It follows that in cp(Gt)

i
(5.5.2) pr [t1]Y + Vp[t2]Y + ...+ VP[ti+1]Y + ...

which proves the theorem in the case that A is an integral domain of
characteristic zero. The general case follows by a lifting argument.
5.6. Lemma.

Let &p S(X) be the formal power series of (2.1.5) then
E)
P Pi
gT’S(X) = gp(X) + gp(8,X7) + ... + g (8,%% )

where gT(X) is the power series of (2.1.1).
Proof. This is an immediate consequence of (2.1.6).

5.7. Isomorphisms.

Suppose that A is an integral domain.of characteristic zero. Then the
formal groups Gt and G_, are strictly isomorphic if and only if there are

S{s Sp»-++ € A such that gt’S(X) = gt,(X)- cr. [3].
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5.8. Proposition.

Let Gt and Gt' be strictly isomorphic over the.characteristic zero

integral domain A, and let s € A be such that g, S(X) = gt.(X)-
. b

15 Spaeee

Then the corresponding isomorphism.

; i i,
Cart{P}(A)/Cart{p}(A)(Fp - va[ti+1]) - Cart{p}(A)/Cart{p}(A)(FP_va[ti+ 1)

1

is given by

1» I V[s.]
i=o P 1

where s = 1.
o)

Proof. This follows from lemma (5.6).

6. CARTIER-DIEUDONNE MODULES (local, more dimensional case)

Again, choose a prime number p, and let A be a commutative ring

with unit element in which all prime numbers q # p are invertible.

(6.1) Let G be an n-dimensional p-typical formal group over A. Let
Y; be the curve Yi(X) = (0,...,O,X,O,...,O)t, X in the i-th place.
It is clear from (5.1) that every p-typical curve in G can be written
uniquely as a (convergent) sum
n e« .
(6.1.1) g L Vila..ly.
j=1 =1 F R
(Use the same arguments as in (5.3)).
In particular the curves Fij can written in the form (6.1.1) and the

module structure of Cp(G) is completely specified by these "relations".
(6.2) Lemma.

Let &p be the power series of (2. 2.1). Then
n © _1 Vm
gT(Yi(X)) = Yi(X) + 2_2_3-1 m; > &nl p[Tm(Q,l)]YQ(X))

Proof. According to (2.2.2) and (2.2.3) we have
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/o
G DI CPREEEAC A PR e
P N
gp(y; (X)) = v (%) + I s "1 % k xP

r=1 J‘l ..+Jk=r P 0

/ p31+ ATV R
. T(p‘]1+"'+‘]k—2) Tjk(l,l) X
37y
=v;(X) + Z z -
I‘—1 J1+ ..+Jk ) ol p 9 . +.
T My
T. (n,i)p X
Iy
A}
/ 0 ‘
T (pdr ety o)
oo n 3.t Joteea4i
=y, () + 1 3 5 — §‘1 fr. (5,1)P"" k=1 P
r=1 J]+ ..+jk=r 2=1 P ’ Jk
0

1 n
Y (0 + o 251 mi: gT(Vm[T (2,3)1v,(x))

(take "m = jk" in the previous formula to obtain this last equality).
qg.e.d.
(6.3) Theorem.

Let G, be the formal group over A obtained from the Gp of (2.2)
by substituting t.(j,k) for T.(j,k). Then Cp(Gt) is generated by
Y1, ..,Y s every element of Cp(Gt) can be uniquely written as a
(convergent) sum Z Z v [allle , and the module structure of

2=1 i=1

Cp(Gt) is then given by the relations

Fy.= % I Vm[t SUPIETE0) YA I POURe
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Proof. This follows from (6.2) forjcharacteristic zero integral domains A
and then by a lifting argument also for all A.

g.e.d.
(6.4) Remarks.

One would of course like to give the same sort of description
for C (G) in the global case, i.e. when there is more than one prime
number not invertible in A. Then one has of course that C(G) is
generated by Y1”"’Yn (if G is n-dimensional) and that every element
of C(G) can be uniquely written as a sum

n o0 .
-z Vi[aizlYQ; and the Cart(A)-module structure of C(G), where

2=1 i=1
Cart(A) is the global counterpart of Cart{p}(A), is then given by a
set of relations '

n o]

Fy.= ¥ LvV.[p

a1 2=1 j=1 J Q:iajszlYl

where ¢ runs through all primes. In this case the b are not

q3i3j ,'Q’
independant as they are in the local case (by theorem (6.3)). I hope
to be able to do something on this in the near future. At the moment

the calculations look exceedingly messy and intractable.
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