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1. INTRODUCTION 

In this short note we present some complements to the constructions 

of (3,4,5]. In §3 we first show how the Witt vectors (of length n) 

associated to a prime p fit into the framework of [3], and then in §4 

how the generalized Witt vectors (cf. [1] and [7]) fit into the 

constructions of [4]. This "requires" a rather special choice of the 

constants n(q1 , ••• ,4t,d) E Z which go into the definition of a 

universal n-dimensional commutative formal group. (Cf. (2.3)). 

Choose a prime number p, and let A be a commutative Z(p)-algebra. 

Let G be a commutative n-dimensional formal group over A. A curve 

in G (cf [2]) is simply an n-column-vector of power series in X over 

A without constant terms. Curves can be added using the formal group 

law G(X,Y) and in addition one has operators [a] for a EA, 

V (= Verschiebung) for n = 1,2, •.• and F (= Frobenius) for n = 1,2, ... n n 

The curves c such that F c = O for all q ¥ p constitute a subgroup 
q 

Cp(G), which is a left-module over a certain noncommutative topological 

ring Cart{p}(A). (cf. (2], [6] and §5). Every element of Cart{p}(A) can be 

uniquely written as a sum E vi[c .. ]Fj. Now let G(X,Y) be a p-typical 
i ,j . p J.J p 

group.law (over a Z(p)-algebra every group law can be brought int~ 

p-typical form), and let y. be the curve y.(X) = (o, ... ,x,o, ... o) , 
J. J. 

X in the i-th place. Then it is easily seen that every element of C (G) 
p 
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u::> n . 
can be written uniquely as a (convergent) sum E E V1 [a . . ]y .. 

i=l j=1 p lJ J 

Cartier's classification theory (local case) says that there is 

an isomorphism of categories between the category of commutative formal 

groups over A and the full subcategory of modules of continuous Cart{p}(A)

left-modules with this basis property.(Cf. [2] and [6]). 

To specify the Cart{p}(A)-module structure of Cp(G) it suffices 

oo n . 
to write F y. as a sum E E V1 [a. 0 ]y 0 • In §5, 6 we do this for the 

p 1 i=1 j=l p lN N 

case that G is a formal group obtained by specializing the p-typically 

universal formal group GT of [3]. (Cf. (2.2) for its definition; all 

isomorphism classes of formal groups over Z(p)-algebras are obtained 

in this way). 

If Gover A is obtained by substituting t.(jk) voor the T.(jk) 
l l 

of GT then the formula for F y. becomes 
p l 

Inversely therefore, given a Cart{p}(A) module M of the right kind, 

the constructions of [3] provide one with a formal group G such that 

C (G) = M. p 

2. RECAPITULATION 

In this section we have collected the results from [3,4,5] which 

will be needed in the sequel. 

(2.1) Local one Dimensional Case. 

Choose a prime number p. Let gT(X) be the power series over 

Q[T 1 , T2 , •.. ] = Q[TJ defined by 

(2.1.1) 
T. i i 

gT(X) = X + r..2. g(p )(xP ) 
p T 

where g~p1 )(X) is the power series obrained from gT(X) by replacing 

the para.meters T., j = 1, 2, ... by T~, j = 1, 2, .... Write 
J J 



(2.1.2) 

Then we have (cf.[3]) 

(2. 1.3) a = 1, a = 
o n 

We define 

(2.1 .4) 

00 ]. 

a.xP 
]. 

k 
p 

3 

Then GT is a form.al group over Z[T1 ,T2 , ... ] = Z[T], and if A is a 

commutative (unitary) Z ~algeb~a, and if 
p 

.G is a one dimensional commutative formal group over A, then there 

exist t 1 , t 2 , ••• EA such that G is strictly isomorphic to Gt where. 

Gt is obtained from GT by substituting tj for Tj, j = 1, 2, 3, ... > 

Further let gT,S(X) over Q[T,S] be defined by 

(2.1.5) 
00 

gT,S(X) = X + I 
i=l 

Then one has ( cf[ 3, 5]): 

I 

]. 

s.xP 
]. 

oo T. ( i) i 
+ I _.!. g p (Xp) 

i=1 p T,S 

(2.1.6) gT 8 (X) = X + , 
j 1 ' ..• ,jkEN 

Let 

(2.1.7) 

+ k-1 
p 

then GT,S is a formal group over Z[T,S], and is isomorphic to GT. Moreover 

if A is an integral domain then Gt and Gt' are strictly isomorphic over 

A if and only if there exists a sequences= (s 1,s2 , ... ) of elements 

of A such that Gt,s(X,Y) = Gt 1 (X,Y) (or gt,s(X) = gt,(X)). 
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2.2. Local~ Dimensional Case. 

Again choose a prime number p, and let T. = (T.(jk)).k be an 
l. l. J 

n x n matrix of indeterminates for each i = 1, 2, . • • . We define 

the column n-vector of power series Sr,(X1 , ••• ,Xn) over Q[ ... , Ti(jk), ... ] 

by 

(2.2.1) 

( )t . (pi)( ) where x1, ••• ,X 1.s the column vector of the X. and gT x1, ..• ,X 
n i . n 

is obtained from gT(x1, •.• ,Xn) by replacing all Tm(jk) by their p1 -th 

powers (m = 1,2, ... ; j = 1, ... ,n; k = 1, .•. ,n). 

Writing 

(2.2.2) 
00 l i t 

i:t..(X1 , ... ,Xn) = E a.(xP1 , ••• ,xP) 
-~ i=o 1 n 

where now a. is an n x n matrix one has (cf. [3]) 
l. 

(2.2.3) a0 = I , a.= n i k 
p 

i i 
where T(p) is the matrix ((T (jk))P ).k. Now define 

n n J 

then GT is an n x n formal group over Z[ .••• , Ti (jk), .•• ], and if A is 

a comniutative ring with unit element such that every prime number 

g f pis invertible in A then every n-dimensional formal group over A 

is isomorphic to a Gt, obtained from GT by substituting suitable 

t. (jk) f'or Ti(jk). 
l. 

2.3. Global~ Dimensional Case. 

Let e. be the n-multiindex e. = (0, ••• ,0,1,0, ... ,0), the 1 in the 
J J 

j-th place. 

We define 

(2.3,1) T'= {d = (d1 , ... ,dn) jdi EN u {o}, d :f, (o, ... ,o),d :f, pre_ for 
J 

all prime numbers p, j = 1, ••• ,n and r = 1,2, ... } 
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For each d € 1', d 'f 

indeterminates Sd = 

e.; j = 1 , ... ,n let Sd be the column vector of 
J t t I: 

(Sd(1), ... ,sd(n)) and let S = e. = (0, ... ,0,1,0, ... 0) 
ej J 

for j = 1, ... ,n; further let T be then x n matrix of indeterminates 
g_ 

(T (jk)).k for all prime powers q. 
q J 

Lets= (s 1 , ••• ,s ), s. €NU {o} be any multiindex. An ordered n J. 

factorization of sis a sequence (q1 ,.,.,4t,d) where qi is a prime power 

and d is a multi index from l" such that q 1 • ... 4td = s. We now define 

for each multiindex s the columnvector a by the formula 
s 

(2.3.2) a = 
s 

n(q1,.;. ,4t,d) 
. . . . . 

P1 

where the sum is over all ordered factorizations of s; p. is a prime 

number such that q. is a power of p.; T(r) is the matrix1 (T (jk)r).k 
J. J. q q J 

and siq) is the column vector of entries Sd(i)q. The n(q1 ,.,.,4t,d) 

are any set of integers satisf'ying·t:ne conditions: 

(2.3.3) 

if P1 'f P2 = . . . = 

and n(q1 , ... ,4t ,d) 

Pr~ Pr+l then n(q1 , •.• ,¾,d) _ 

r-1 
- O mod p2 

r 
- 1 mod p1 

(If r = t, take Pr+1 = any prime number 'f pr) 

(Such integers exist). Now let g(X1, ••• ,Xn) be the column-n-vector 

of power series define4 by 

(2,3.4) 
s 

g(x1, ••• ,xn) = Ea8 x 1
1 

s 

s 
X n 

n 

where s runs through the multiindices s = ( s 1 , .•• ,sn), si € N U {0 }, 

s,; (o, ... ,o). 

We define 
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then G is a universal n dimensional commutative formal group over 

Z[ ... , T4(jk), ... ; ... , Sd(i), ••• ] 

3. WITT VECTORS ASSOCIATED TO A PRIME p. 

The formal group of Witt vectors of length n associated to a 

prime pis a p-typical formal group over any commutative ring with 

unit element A. There for it must be isomorphic to some formal group 

Gt, ti(jk) EA where GT is the formal group of (2.2). (In fact because 

this Witt formal group is p-typical it must be equal to some such Gt). 

3.1. Witt Vectors. 

Choose a prime number p. The Witt polynomials are then 

4>1 (X1) = X1 

(3.1.1) 

(3. 1.2) 

<I>2(X1,X2) = pX2 + X~ 

n-1 = p X n 
+ ••• + 

<I>.(s1 , •• ,,S.) = <I>.(x1 , ••• ,X.) + <I>.(Y1 , ••• ,Y.) 
1 1. 1 1 l. 1 

n-1 
+ xP 

1 

have coefficients in z, and define a formal group of dimension n over 

any commutative ring with unit element A. 

3.2. Specification. 

Let t.(jk) i = 1,2, .•• ; j = 1, •.. ,n; k = 1, ... ,n be defined by 
1 

t.(j,k) = 0 if i > 
1 

(3.2.1) t 1 (j ,k) = 0 unless 

t 1 (k+1 ,k) = 1 k = 

I.e. the matrices t. are equal to 
1 

2; j = 1 , •.. ,n; k = 1, . .. ,n 

j = k + 1 

1, ••. ,n-1 
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(3.2.2) (! 

,O 

t, = . • 0 ' t2 = o, ... 
' t = o, . .. 

0 1 0 
n 

3.3. Proposition. 

Let Gt be the formal group obtained from then-dimensional 

formal group GT of (2.2) by substituting t.(jk) for T.(jk) where the 
J. J. 

ti(jk) are defined by (3.2.1). Then Gt is the group of Witt vectors 

of length n associated to the prime p. 

Proof. Because both Gt and the formal group of Witt vectors of length 

n associated top are defined over Zit suffices to prove this for 

A= Z. 

I.e. 

According to (2.2.3) adn (2.2.4) the logarithm of Gt is equal to 

(lO i i 
E a.(xP1 , ..• ,xP) 

i=o 1 n 

x1 

( t )i 
::. _1_ 

J. 
p 

x') + l xP 
<Co p 1 

(p) (pi-1) 
t1 .t1 ..• tl 

a - ...-a.--'--:---'--- = 
' i - i 

p 

(3.3.2) x3 + 1. xP 
p 2 

1 2 
+ -xP 

2 1 
p 

x + l xP 
n p n-1 

+ .... 
1 n-1 / 

+ --xP , 
n-1 1 / 

P I 

But according to (3.1.1) and (3.1.2) this is exactly the logarithm of 

the formal group of Witt vectors of length n associated top. 

q.e.d. 

4. GENERALIZED WITT VECTORS 

The formal group of generalized Witt vectors of length n 

(cf. [1], (7)) is a formal group over any commutative ring with unit 
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element A. It must be therefore be equal to some formal group obtained 

from the formal group G of (2.3) by suitable substitutions for the 

Tq(jk), q a prime power, and Sd(i), d E1r, {e1 , ... ,en}. 

It turns out to be convenient to choose the n( q1 , •• _. ,4t ,d) 

in a rather special way (cf. 4.3) below). 

4.1. Generalized Witt Vectors. 

The generalized Witt polynomials are 

1jJ1(X1) = X1 

1)J2(x1,x2) = 2X2 + X~ 

(4.1.1) 

1jJ (X1 , ••• ,X ) = 
n n 

(4.1.2) ljJ.(S1,····S.) = 1jJ.(x1, ... ,x.)+ 1.ji.(Y1,····Y.) 
1 1 1 1 1 J. 

have their coefficients in Zand define a formal group of dimension 

n over any commutative ring with unit element A. 

(4.2) Let p1, ... ,ps be a sequence of prime nUlllbers, p1 < p2 < •.• < Ps. 

Let J(p~1, ... ,p~s) be the set of all sequences (p1, ... ,p~) such that 

p! f: •i'P , ••• ,pt; for all i, n = r 1 + ... + r , and such that p. occurs 
1 1 sJ s 1 

exactly ri times in (p1 , ... ,p~). If (p1, ... ,p~) E J(p~l, ••. ,p:s) we 

also write J(p1, ... ,p~) = J(p~1 , ... ,p:s). For example 

2 J(2 ,3) = {(2,2,3), (2,3,2), (3,2,2)} 

J(2,3,5) = {(2,3,5), (2,5,3), (3,2,5), (3,5,2), (5,2,3), (5,3,2)}. 

(4.3) Lemma. 

There exist integers n(p1, ... ,p~), for all sequences of primes 

(p1, ... ,p~) such that 

a. If P1' .J. P2' = ... = p, .J. p' 1 ' r r r r+ (r ~ m, take p;+l = any prime# p; if 

r = m)then n(p1, ... ,p~) = 1 d , d -( , , ) - 0 d ( , ) r-1 mo p1 an n p1 , .•. ,pm = mo p2 

b. If p11 = p21 = ... = p' # p' 1 , (r < m, take p' = any prime f p' if 
r ~ - ~1 r 

r = m) then fi(p1, ... ,p~) = 1 mod(p1)r. 
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c. For all J 

r n(p1•, ••. ,p')n(p2', ... ,p') ... n(p' 1 ,p')ii.(p') = 1 
( , , ) E J m · m m- m m P1 , ••• ,Pm 

Proof. We use induction on m. Form= 1 let n(p') = 1 for all prime 

numbers p'. Suppose we have defined ii for all sequences of primes of 
r 1 rs 

length< m. Let J = J(p1 , ••• ,p5 ), r 1 + .•• + r 5 = m, p1 < p2 < ••• < P 8 

prime numbers. Then 

i:: n(p1', .•• ,p')n(p2', ••• ,p') ... n(p' 1 ,p')ii{p') = 
( , , ) € m m m- m m P1, ... ,Pm J 

= r n(p1•, •.. ,P' )ii.(p2', ..• ,P') .•. n(p' 1 ,p' )n(p') + ... 
( , , } E J m m m- m m 
p1 '.'. ,pm 

p'=p 1 1 
(4.3.1) 

+ E ii(p1,···,P')n(p2,···,P') ... ii(p' 1,p')n(p') 
(p1, ... ,p~) E J m m m- m m 

P1 =ps 

Now for each i = 1,2,, .. ,s let cr(i) be the sequence in J 

p. ,, ... ,p. 1) 
J.- l.-

We define 

(4.3.3) 

where the n{cr(i)) are still to be determined. Then using (4.3.1) we see 

that 

(4,3.4) 

Now let r = max r .. We define 
J. 

l. 

s 
E ri(cr(i)) 

i=1 
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( ) r-1 p.-1 p. 
n(a(i)) ( II ) J. J. 1, ... ,s-1 = p. J. = 

j~i J 

(4.3.5) 
s-1 

n(a(s)) = 1 - }:; n(a(i)) 
i=1 

(N.B. if s=1, take n(a(1)) = 1). Then for i = 1, ... ,s-1 

r. p.-1 
1. 1. n(a(i)) 1 mod because 1 mod p. for all j 'f i, and r > - p. p. - r. 

1. J J. -
r. 

r-1 n(a(i)) - 0 mod p _J for j :/- 1. because P· > r > r. 
J J. - J 

and for i = s we have 

r r 
n(a(s)) - 1 mod pss because n(a(i)) - 0 mod pss for all i Is. 

r. r. 
n(a(s)) - 0 mod p _J for J :/- s because n(cr(i)) - O mod p.J for all j 1 J J 

r. 
and ii(a(j)) 1 J - mod p .. 

J 

It follows that then defined by (4.3.3) and (4.3.5) satisfy the 

conditions a), b), c) of (4.3). 

1. 

q.e.d. 

(4.4) Specification. 

We define t (i,j) and sd(i) as follows 
q . 

t (i,j) = 0 if q is a prime power but q 

t (i,j) = 0 unless i/j = p p 

not 

t (i,j) = p 1 if i/j = p i' j € {1, ... ,n} 

sd(i) = 0 for all d E 1', {e1 , ... ,en}, l = 

(4.5) Proposition. 

a prime number 

1, . .. ,n 

i,s 

Take n(q1 , ... ,~,d) = n(p1 , ... ,pt) if qi is a power pi in the 

definition of the formal group G of (2.3) (where then are as in lemma 

(4.3)). Let W be the formal group obtained from this G by substituting n 
for the Tq(jk) and Sd(i) the values specified in (4.4). Then Wn is the 

formal group of generalized Witt vectors of length n. 

Proof. According to (2,3) the logarithm of W is equal to 
n 



s1 
log w (x1 , ••. ,x) =Ea x1 n n s 

s 

s 
X n 

n 

11 

and using (2.2.3) and (4.4) we see that the column vector a 1s eQual s 

to zero unless the multiindex s 1s of the forms= me., for some 
J 

m EN, j E {1, ... ,n}. And then 

a = 
me. 

J 

(p1 •. . pk-1) (p1 .. ·Pi:) 
• • • t I e • 

pk J 

r 1 r.Q, _ r 1 rt 
where J = J(p1 , ..• ,p.Q,) if m = p1 ••·Pi 

Now we have t(r) = t for all prime numbers p and all r EN and 
p p 

(t' •...• t , ) b = 1 if a/b = p1 ... pk= m 
P1 . pk a' 

Therefore, using n(p1' , ... ,pk.,ej) = n(p,' , ... ,pk) and (4,4) c) we see that 

the i-th entry a (i) of a is eQual to me. me. 
J J 

a (i) = m- 1 if i/j = m, 
me. 

J 

Therefore, as 

log w (x1 , ... ,x) 
n n 

we have 

log w (x1, ••• ,x )(i) = 
n n 

a (i) = 
me. 

0 if i/ j # m. 
J 

E 1 :xn.1 
[ . m 1/m 

m l 

E a r. 
me. J 

me. J 
J 

and we see by (4.1,1) and (4.1.2) that log W is equal to the logarithm 
n 

of the generalized Witt vectors of length n. 

Q.e.d. 
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5.1. Definition of~ (cf. 2) 

12 

Let G be an n-dimensional form.al group over a ring A. A curve 

in G is an n-column-vector of power series in X over A without constant 

terms. Two curves c 1 (X) and c2 (x) can be added as follows: 

(5.1.1) 

This turns C(G), the set of all curves in G, into an abelian group. 

The subgroupsCn(G) of curves= O mod(Xn) define a topology on C(G). 

The topological group C(G) admits operators [a], 

a~ A; Vn, n EN, Fn' n-E N which are defined as follows 

(5.1.2) ([a]c)(X) = c(aX) 

The definition of F requires a bit more care. First suppose that A 
n 

is an integral domain of characteristic zero and let~ be a primitive n 
n-th root of unity. 

We set 

(5.1.3) 

Galois theory shows that the right hand member of (5.1.3) is in fact 

a power series over A, and because the right hand side of (5.1.3) is 

invariant under the substitution x1/ni---+- ~ x1/n it follows that the 
n 

right hand side of (5.1.3) is in fact a power series in X. To •define 

the operator F over arbitrary rings · A one lifts both the formal 
n 

group G and the curve c to a formal group G' and a curve c' over an 

integral domai~ of characteristic zero A', one calculates F c' over A' n 
and then reduces F c' to a curve over A. n This reduction is then the 

desired F c. One has the following relations between the various n 
operators (cf. [2]). 

00 

(5.1.4) [a] + [b J = I: V s (a,b) F 
n=1 n n n 

where the polynomials s (X,Y) are defined by Xu+ Yn = 
n 

(5.1.5) [al [b] = [ab] 

E dsd(X,Y)n/d 
din 
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(5.1.6) V V = V , F F = F m n mn m n mn 

(5.1.8) If (n,m) = 1, F V =VF m n nm 

(5.1.9) 

where IdC(g) is the identity on C(G). 

Choose a prime number p. A curve c in G is called p-typical if 

F c = O for all prime numbers qi p. The formal group G is called 
q_ 

p-typical if the curves y1 , ... , y defined by y.(X) = (o, ... ,o,x,o, ... ,o), 
n 1 

X in the i-th place, are p-typical. 

Let A be an integral domain, and g(X1, ... ,X) the logarithm of n . 
G. Then 

(5.1.10) c is p-typical - g(c(X)) = 

where them. are n-column-vectors of elements from A. 
J 

The p-typical curves in G constitute a subgroup of C(G) which is 

denoted C (G). This subgroup is stable under the operations [a], V , F 
p n n 

5.2. The Ring Cart{p}(A) (cf . .[2] and [6]) 

Choose a prime number p. The (in general non-commutative) 

topological ring Cart{p}(A) consists of all expressions 

X = 
00 

}: Vi k:l, .. ]Fj 
. . EN P iJ P 
1 ,J 

such that for all i there are only finitely many j such that 

a .. # 0 (I.e. every element x can be written in a unique way as such 
1J 

a (convergent) sum. Addition and multiplication in Cart{p}(A) are 

defined by the relations 

00 

[a]+ [b] = r rs (a,b)Fn, wheres (X,Y) is defined in (5,1.4) 
n=o p VD p pn 

(5,2.2) [a][b] = [ab], v0 = F0 = Id, F V = p.Id p p p p 

[a]V = V [aP], F [a]= [aP]F p p p p 
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where Id is the identity element of Cart{p}(A). The ring is topologized 

by the subgroups Cart{p}A) consisting of those elements x such that 

a . = 0 if i < n. 
iJ 

The operators [a] and F, V defined in (5.1) turn C (G), the p p p 
group of p-typical curves of G into a left (continuous, complete) 

module over Cart{p}(A). 

Now let A be a commutative ring with unit element such that 

every prime number q ~pis invertible in A. Then Cartier's 

classification theory says that the functor Gr-+ C (G) is an equivalence 
p 

of categories between the commutative formal groups over A and a certain 

full subcategory of (complete, continuous) left modules over Cart{p}(A). 

(There is also a global version of this theory (cf.[2,6])). 

It is the aim of the next few subsections and §6 to calculate 

these modules (as modules) in the case that G is a p-typical group over 

A (A as before; note that every commutative formal group over A is 

strictly isomorphic to a p-typical one). 

From now on A is a commutative ring with unit element such that 

all prime numbers q ~pare invertible in A. 

5.3. Let now G be a one dimensional group over A, and y be the curve 

y(X) = X. Suppose that G is p-typical. It is clear from (5.1) that 

every p-typical curve in G can be written in a unique way as a 

(convergent) sum 

(5.3.1) 
00 

E 
i=o 

vi [a. ]y 
p i 

(Use (5.1.10) to prove this for, characteristic zero integral domains A, 

and then use a lifting argument to prove.this for all A). 

In particular the curve F y can be written as a sum. (5.3.1). p 
It follows that the modules Cp(G) arising from one-dimensional 

(p-typical) formal groups over A are of the form. 

(5.3.2) 

for certain a0 , a 1, ••. EA 

5.4. Lemma. 

00 

E Vi[a..]) 
i=o P J. 

Let gT(X) be the formal power series of (2.1.1) then 
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Proof. this is an immediate consequence of (2.1.3). 

5.5. Theorem. 

Let Gt be the formal group over A obtained from the formal group 

GT of (2.1) by substituting t. for T .. Then 
i i 

as a left Cart{p}(A) module. 

Proof. We have to calculate F y. Suppose first that A is an integral p 
domain.of cha;racteristic zero. Then, if gt(X) is the logarithm of Gt, 

P · / i-1 
(5.5.1) gt(F y) = r gt(,ix1 P) = gt(t1X) + gt(t2xP) + ... + gt(tl.xP ) 

P i=1 P 

according to lemma (5.4). It follows that in Cp(Gt) 

which proves the theorem in the case that A is an integral domain of 

characteristic zero. The general case follows by a lifting argument. 

5.6. Lemma. 

Let gT,S(X) be the formal power series of (2.1.5) then 

i 

6T,s<x) = 6T(x) + gT(s1xP) + ... + ~(sixP) 

where gT{X) is the power series of (2.1.1). 

Proof. This is an immediate consequence of (2.1.6). 

5.7. Isomorphisms. 

+ • ., 

Suppose that A is an integral domain.of characteristic zero. Then the 

formal groups Gt and Gt' are strictly isomorphic if and only if there are 

_s 1 , s 2 , ... EA such that gt,s(X) = et 1 (x). Cf. [3]. 
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5.8. Proposition. 

Let Gt and Gt' be strictly isomorphic over the,characteristic zero 

integral domain A, and let s 1 , s 2 , ... EA be such that ~t,s(X) = gt 1 (X). 

Th"1'n the corresponding isomorphism. 

1.s given by 

where s = 1. 
0 

00 

1 i-+- t 
i=o 

i 
V [s.] 

p l. 

Proof. This follows from lemma (5.6). 

6. CARTIER-DIEUDONNE MODULES (local, more dimensional case) 

Again, choose a prime n~ber p, and let A be a commutative ring 

with unit element in which all prime numbers q ¥pare invertible. 

( 6. 1) Let G be an n-dimensional p-typical formal group over A. Let 

curve y. (X) t in the i-th y. be the = (o, ... ,o,x,o, ... ,o) , x place. 
l l. 

It l.S clear from (5.1) that every p-typical curve in G can be written 

uniquely as a (convergent) sum 

n 00 

(6.1.1) I 
l 

I Vp[a .. ]y. 
j=1 i= 1 l.J J 

(Use the same arguments as in (5.3)). 

In particular the curves F y. can written 1.n the form (6.1.1) and the 
p J 

module structure of C (G) is completely specified by these 11 relations 11 • 
p 

(6.2) Lemma. 

Let gT be the power series of (2. 2.1). Then 

n oo 

gT(y.(X)) = y.(X) + t t l gT(r[T (t,i)]yn(X)) 
l 1. t= 1 m= 1 p P m X, 

Proof. According to (2.2.2) and (2.2.3) we have 



00 

~(yi(X)) = yi(X) + E E 
r= 1 j 1 + • . . + j k =r 

= y.(x) + 
l. 

00 

00 

= y. ex) + r r 
1 r:;: 1 j 1 + ..• + j k =r 

k 
p 

k p 
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j + ••• +jk 1 
1 - r 

T. (n,i)P xP 
Jk 

(take "m = in the previous formula to obtain this last equality). 

q.e.d. 

(6,3) Theorem. 

Let Gt be the formal group over A obtained from the GT of (2.2) 

by substituting t.(j,k) for T.(j,k). Then C (Gt) is generated by 
l. l. p 

Y1 ,., .,y , every element of C (Gt) can be uniquely written as a 
n n oo .p 

(convergent) sum r r V~[ait]Yt, and the module structure of 
£=1 i=1 

Cp (Gt) is then given by the relations 

n 00 

F y. = E E vmc t 1 < i, i) hi, l. = 1 , ... ,n p l. .Q.=1 m=o P m+ 
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Proof. This follows from (6.2) for1characteristic zero integral domains A 

and then by a lifting argument also for all A. 

q.e.d. 
(6.4) Remarks. 

One would of course like to give the same, sort of description 

for C ( G) in the global case, , i.e. when there is more than one prime 

number not invertible in A. Then one has of course that C(G) is 

generated by Y1 , ••. ,yn (if G is n-dimensional) and that every element 

of C(G) can be uniquely written as a sum 

n oo 

L L Vi[ait]y.Q,; and the Cart(A)-module structure of C(G), where 
.Q,=1 i=1 

Cart(A) is the global counterpart of Cart{p}(A), is then given by a 

set of relations 

n oo 

F y. = E · ~ V. [b . . 11 ]y n 
q 1 t=l j=1 J q,i,J ,..., ..., 

where q runs through all primes. In this case the b .. n are not · 
q,1 ,J ,..., 

independant as they are in the local case (by theorem (6.3)). I hope 

to be able to do something on this in the near future. At the moment 

the calculations +ook exceedingly messy and intractable. 
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