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1. INTRODUCTION 

Let K be a local field with finite residue field. "Local class 

field theory", for the purposes of this paper consists of the (more or less) 

explicit description of the maximal abelian 

calculation of the galois group Gal(Ka,b/K); 

Gal( Kab/K) ~ R'* , the completion of K * with 

extension Kab of K, of the 

i.e. the proof that 

respect to the topology 
* given by the open subgroups or finite index in K , and finally of a 

description of the isomorphism il'* ~ Gal(Kab/K). "Local class field theory" 

in this paper does not indude e.g. a calculation of the Brauer group 

Br( K). 

It is the aim of this paper, which is partly expository in nature, 

to show that "local class field theory" in this sense can be treated in 

a fairly small number of pages (38) and without using any of the involved 

(but powerfull) machinery which one "usually" finds in this connection. 

In particular we need nothing at all ( not even in a concealed way) of the 

cohomology of groups. All the f"acts which we assume known are colle·cted 

in §2. A large part of this paper f§3, 5, 6 and most of §7) is closely 

related to my- 1969 amsterdam thesis. 

*} Part of the work for this paper was done while the author enjoyed a 

Fullbright-Hays travelling grant (Febr/March 1973). 
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The remaining part of this introduction consists of an outline 

of the structure of the theory. 

First let K be a local field with algebraically closed residue 

field, and let L/K be an abelian (necessarily totally ramified) extension 

of K. Then one forms the following sequence. 

i N 
( 1 • 1 ) 0 + Gal( L/K) - U( L) /V( L/K) - U(K) + 0 

where U(L), U(K) are the units of Land K res~ectively; V(L/K) is the 

subgroup of U(L) generated by the elements of the form s(u)u-1 , 

u E U(L), s € Gal(L/K); the homomorphism i associates the class of 

s(~L)(n1 )-1 to s € Gal(L/K), where n1 is a uniformizing element of L; 

and N is induced by the norm map NL/K' 

The first main result on which the theory rests is 

(1.2) Theorem. The sequence (1,1) is exact. 

The proof of this theorem (cf. §4) presented here, is, as far as 

I know, completely new. The old proof in [4] still used some cohomology 

of groups theory. 

Next, let K be a local field with finite residue field and L/K 

an abelian extension of' K. Taking maximal unramif'ied extensions and 

completing them we obtain an abelian extension of local fields with 

algebraically closed residue f'ields L /K with galoisgroup nr nr - -
Gal(L /K ) canonically nr nr · 

isomorphic to Gal(L/K) , the ramification ram 

subgroup of' Gal(L/K). We can now form the diagram with exact rows. 

- -
0 + Gal(L/K) - U(L )/V(L /K )-+ U(K ) ram • nr nr nr nr +0 

! F-1 ! F-1 ! F-1 
A A A -

0 + Gal(L/K) __.. U(L )/V(L /Knr)-+ U(K ) + 0 ram nr nr nr 

where F is a lift of the Frobenius automorphism F E 

-the algebraic closure of k. Because Ker(F-1: U(X ) 
nr 

Gal(k /k), k 
s s -

+ U(Knr) = U(K} 

and the induced me.p F-1: Gal(K/K) + Gal(L/K) is the zero map, ram ram 
8JBtlOTHEEK 11.~ATHfMl,T!S'CH CF.tm 

AMSTEi:D,;,Vl iUIIII 
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we obtain by means of the snake lemma a homomorphism 

<I>( L/K) U(K)- Gal( L/K) • 
ram 

This homomorphism turns out to be surjective and its kernel is 

NL/KU(L}. It is also functorial in L. These homomorphisms then look 

remarkably like part of the "reciprocity homomorphisms" 
* r(L/K): K -+ Gal(L/K) which we are trying to construct. 

The next step is to construct a number of abelian totally 

ramified extensions L /K which have maximally small norm groups. 
m 

These are the Lubin-Tate extensions first constructed in CT ]. In case 

K = Qp they are the extensions generated by the p-th roots of unity. 

They are obtained as follows. Choose a uniformizing element 

1TK or K. Let f(X) be a polynomial of the form 

f(X} = Xq + ;rK(aq_ 1xq-l + .•• + a2 x2) + TrKX' where ai € A(K), the 

integers of K, and q is the number of elements of k, the residue field 

of K. Let /m)(X) be inductively defined as /m)(X) = r(/m-l)(X)) and let 

A be a root of /m)(X) which 1s not a root of /m-l)(X). One defines; 
m 

L = K( >.. ) • One now proves 
m m 

(1.3) Theorem. (i) N1 /K(U(Lm)) c lf(K) = {u E U(K)I u = 1 mod1T~}. 
m 

(ii) L /K is an abelian totally ramified extension of 
m 

( ) m-1 
degree q_ - 1 q • 

The "almost reciprocity homomorphism" then gives N1 /K(U(Lm)) = lf1(K), 
m 

and using this ( and the fact that Gal( K /K) = Z is topologically free) 
nr 

the ''almost reciprocity homomorphism" yields that Gal(Kab/K) == U(K) x Z 

and that Kab = ½r·Knr' where L'IT = U Lm. It remains to "extend~ the "almost 
m 

recinrocity homomornhism" <I>: U(K)- Gal(Kb/K) to a reciprocity ' ·· a ram 

* homomor~hism r: K -+ Gal(Kab/K} such that the kernel of 

*~ • 
r: K -+ Gal(Kab/K)-+ Gal(L/K) is precisely NL/K(L) for abelian extensions 

L/K. It turns out that the ma-p u1--+ tP(u- 1) can indeed be extended in this 

way. 
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• Finally we give the "explicit" description of r : K _., Gal(Kab/K), 

due to Lubin and Tate. This finai part of §7 is based on [7]. 

Over the years I have had many valuable conversations with various 

people about "local class field theory". It remains for me to thank them, 

esneciall.y Dr. A. Menalda ( to whom I owe a main part of the idea 

of the proof of ( 1. 3) (ii)), Prof. J. Neukirch (who challenged me to 

get rid of all cohomological considerations), Prof. F. Oort, and the 

many people who urged me to write this stuff down. 

2. PRECIS OF NCYrATIONS, CONVENTIONS AHD RESULTS ASSUMED KNOWN. 

In this section we have collected the results without proofs which 

will be used in the :following. They can all be found in a standard text 

like [8 J, Parts I, I! and (9 ]. 

2.1. Notations (for local fields) 

A l.ocal field K is a field K with a (normalized exponential} 
• valuation vK K -+ Z on it. We define; 

A(K) = {x E Kl vK{x) ~ oJ, the ring of integers of K. 

U(K) = {x E Kl vK(x) = O}, the units of K , 

,rK, a ,miformizing element of K; i.e. an element of K such that 

vK( ,rK) = 1. 

cm.( K) = {x € Kj vK(x) > O} = ,r0(K), the maximal ideal of A(K). 

ti°"(K) = {x € U{K) I x = 1 mod{,r~)}, 

k = A{K)/ m(K), the residue field of K. We shall always assume 

that k is perfect. 

K• = K '- {O}, the invertible elements of K. 

Finally. f:. S denotes the number of elements of a set S. 

2. 2. Extensions of local fields 

Let L/K be a finite ga.lois extension. The galois group is denoted 

Ga.l(L/K). This is a solvable group i:f the residue field is finite or 

algebraically closed.Cf.[ 8] Ch. IV §2. (If L/K is not galois one denotes 

with r(K,L-+ n) the various isomorphisms of L into a. (large enough) 

algebraically closed field n). Let KL be the maximal unramified 
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subextension of L/K. The subgroup Gal(L,K1 ) is denoted Gal(L/K) 
. i-am 

and is called the ramification subgroup of Gal(L/K). Gal(L/K) ram 

is a normal subgroup of Gal( L/K). If M/K is a galois extension containing 

L/K then the natural map Gal(M/K) -+ Gal(L/K) maps Gal(M/K) into ram 

Gal(L/K) • 
ram 

Let K be a maximal unramified extension of K. The completion 
nr 

Knr, is a local field with as residue field ks, an algebraic closure 

of k. We now choose once and for all an algebraically closed extension 

n of K and all extensions of K are supposed to be contained in n. 
rrP~· A 

If k is finite, then Gal(K /K) = Z (the completion of Z vith respect 
nr 

to the topology of subgroups of finite index), and we use F to denote 

the Frobenius automorphism in Gal(k /k), to denote its canonical lift s ... 

in Ga1(K /K} and its extension to a K-automorphism of K . nr nr 

Kab denotes the maximal abelian extension of K. If k is finite 

K c Kb' nr a 

If L/K is finite galois, then L /K is a galois extension with 
nr nr 

its galois group· Gal(L /K } canonically isomorphic to Gal(L/K)ram 
nr nr ... .... 

( restrict s € Gal(L /K ) to L). nr nr 

2. 3. Two results on rn maps. 

(i) Let K be a local field with algebraically closed residue field, 
* * 

(ii) 

and L/K a finite extension of K. Then NL/K;L - K and 

NL/K: U(L)--+ U(K) are surjective (Cf.[ 8 ] Ch. V). 

Let K be a local field with finite residue field and L/K an 

unra.mified galois extension then NL/K: U(L)-+ U(K) is surjective 

( Cf. [ 8 ] Ch • V § 2 ) • 

3. THE DECOMPOSITION THEOREM 

Let K be a local field ( in the sense of §2). We fix some algebraically 
.... 

closed field n containing I(nr· All composite fields are supposed to be 

taken in this large field. 

( 3. 1.) Theorem. 

Let L/K be a finite galois extension, where K is a local field with 
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finite residue :field. Then there is a totally ramified extension 

L'/K such that L' = L!K = L.K . = L • If' Gal(L/K) c: ZGal(L/K) 
nr nr nr nr ram 

we can take L'/K to be an (a.belian) galois extension. 

(Here ZG denotes the centre of the gzooup G). 

Proof. Let K1 be the maximal unramified subextension of L/K. 

The galois group Ga.l(~/K) is cyclic with F (FrobeniusJ as ~ 

L generator. Let F' be any lift in Ga.l(L/K) of F. Let 

r be the order of F'. Let K be the un.ramified extension r 
of degree r of K. Then K c K • De:fine F" € Gal( L.K /K) --i, r r 
by means of the conditions F"f K = Frobenius € Gal(K /K) 

r r 
K----

and F"l 1 = F' e: Gal(L/K). Then F" is welldefined. Let 

L' be the invariant field of F". Then L '/K is totally ramified end 

L!K = L. K • 
r r 

Finally if Gal(L/K) c: ZGal(L/K), then G(L.K /K) c: ZGal(L.K /K) ram r ram r 

which implies that the subgroup of Gal(L.K /K) generated by F" is normal, r 
so that L' is galois over K. 

( 3.2.) Remark. 

Theorem (3.1) is also true for local :fields K with _perfect (but not 

necessarily finite) residue fields. Cf. [4], 2.8 or [5], no.2. The 

proo:f is different in those cases • 

(3.3.) Corollary. 

Let K be the maximal abelian extension of K. Then Kb= K .L 
ab a nr 

where L/K is a maximal totally ramified abelian extension of K. 

Proof. Use infinite galois theory and the fact that Gal{K /K) = Z nr 
is topologically free~ 

(3.4) Corollary. 

Gal ( K b/K) = lim Gal ( L/K) where L/K runs over all finite 
a ram + ram 

abelian extensions and the maps Gal(L/K) + Gal(M/K) are induced ram ram 
by the natural projections Gal(L/K) + Gal(M/K) if Mc: L; ... 
Gal(K b/K) = Gal(K b/K) x Z. a a ram 
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4. LOCAL FIELDS WITH ALGEBRAICALLY CLOSED RESIDUE FIELD. 

In this section K is a local field with algebraically closed 

residue field. 

(4.1) Let L/K be an abelian galois extension (necessarily totally 

ramified). We consider the following sequence of abelian groups · 

i NL/K 
(4.1.1) 0 -+ Gal(L/K) -+ U(L)/V(L/K) - U(K) -+ U 

where U(L) is the group of units of L; U(K) is the group of units of K; 

V(L/K) is the subgroup of U(L) generated by the elements of the form 

SU 
~, u E U(L), s E Gal(L/K); NL/K is induced by the norm map U(L)-+ U(K) 

(It is clear that NL/K(V(L/K)) = {1}); and i is defined as 

S7TL 
i(s) = class of -- (this does not depend on the choice of n1 ). 

,r L 

( 4. 2) Lemma. 

The map i is a homomorphism of groups 

Proof'. 
t ( 11"1,) 
. . . mod V(L/K) 

TTL 

because t(n1 ) is another uniformizing element of L; i.e. t(n1 ) = un1 

for a certain u E U( L ), 

(4.3) Theorem on the fundamental exact sequence. 

Let L/K be an abelian extension of the local field K (with 

algebraically closed residue field). Then the seqtience ( 4. 1. 1) 

i 
0-+ Gal(L/K)-+ U(L)/V(L/K)-+ U(K) + 0 

is exact. This sequence will be called the fundamental exact sequence. 

The proof of theorem (4,3) is divided into several steps. We first 

prove the injectivity of i. To do this we use the following elementary 

lemma on abelian groups. 



8 

( 4 . 4) Lemma. 

Let G be a finite abelian group and g E G en element of G. 

Then there exists a subgroup Hof G such that the following conditions 

are· fulfilled 

(i) G/H is cyclic 

(ii) If r : G + G/H is the canonical map, then ord(g) = ord(r(g)} 

whereord( ) denotes the order of a group element. 

Proof. Let g = e GP be the decomposition of G into its Sylow subgroups, 

and let g = (¾)P under this decomoosition. We write Gp as a 

direct sum of cyclic groups 
i, i 

G = Z/(p ) '8 ••• '8 Z/(p r), 
p 

For n E z~,let v (n) denote the number of factors pin n; i.e. 
p 

V (n) 
n = p P . m with ( p ,m) = 1 and let 

w (g ) = max {i - V (g (n))} 
p p n p p 

n 

Then wp(gp) 
ord( ~) = p 

Now choose an index b such that wp(~) = ib - vp(~(b)). And let 

i 
H = p 

Z/(p n) c G 
p 

H = l9 H c G 
p 

Then if rp: Gp+ Gp/Hp is the canonical map,ord(~) =ora(rp(8n)) and 

consequently ord(g) = ora(r(g)) 

(4.5) Proof of the injectivity of i : Gal(L/K) -+ U(L)/V(L/K) 

Let 1 :;. g E G = Gal(L/K); and let H be a subgroup of G such that 

the two assertions of (4.4) hold. Let g be the image of gin G/H, 

then g ,- 1 ; let f be a genera.tor of G/H and let f be any lift in G of 

f; then if g = fr 

g = rh for a. certain h EH. 
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Suppose that i(g) E V(L/K). Then we have (using(4.2)) 

(4.5.1) rc1rr) h( 'ITL) f1-h. ( u .. ) 
= II J 1J 

1Tr 
\ i ,j u .. 

L iJ 

where i = 1,2, ... ,ord(f); and h. runs through the elements of H; 
J 

and u .. € U(L). 
iJ 

Now because 

(4.5.2) = :fih( u) :fi-\( u) 

:fi-lh(u) • fi-2h(u) 

we can rewrite (4.5, 1) as 

(4.5.3) 

fh( u) h( u) 
. h(u) . u 

w E U( L), 1-\i E U( L) 

Let M be the invariant field of the subgroup H of G. Taking NL/M on 

both sides of equation (4.5,3) we obtain 

(4.5.4) r< 1r~) rev) 
=--

r w 
'ITM 

where 1TM = NL/M(n1 ) and w = NL/M(w). Because M/K is cyclic, equation 

( 4 4 ) . . r -- 1 • / ,5. implies that 1TM w EK, which is impossible because MK is 

totally ramified and r <ord( f) = [M : K], as g :, 1. 

The second step of the proof of theorem (4.3) consists of the 

proof of the exactness of the fundamental sequence in the case that 

L/K is a cyclic extension. To do this we need the "classical" version 

of "Hibert 90" (cf, [3], § 13, Satz 114). 

We repeat the proof for completeness sake. 

4.6. Lemma,("Hilbert 90.") 

Let L/K be a cyclic galois extension, and suppose that NL/K(x) = 

for a certain x E L. Then there exists an y E L such that 

x =~,wheres E Gal(L/K) is a generator of the galois group. 
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Proof. Let a be any element of L. One forms 

Y = ( ) -1 2( ) ( -1) -1 n-1( ) n-2( -1) ( -1 -1 _ a+ s ax + s a .s x .x + ••• + s a .s x ••• s x ).x 

where n =oi-d{s). We then have 

n-1 ( ) n-2 ( - 1 ) ( - 1 ) + S a ,S X • •• s X + 

n( ) n-1( -1 -1 + s a .s x ) ••. s(x ) 

A n( ) n-1( -1) ( -1) -1 s s a = a and s x ••• s x x = 1 , it follovs that 

s(y)x-1 = y 

If y were equal to zero for all a; then letting a run through a basis 

of Lover K we vould have a nontrivial solution (viz. 
( - 1 ( - 1 ) - 1 n -2 ( - 1 ) ( - 1 ) - 1 ) 1,x , s x x , ••• s x ••• s x x for an nxn system of 

linear equations with nonzero determinant. Therefore y ~ 0 for suitable 
• ( ) - 1 a, which means that x = s y y • 

(4.7) Proof of the exactness of the fundamental exact sequence in the 

cyclic case 

Let L/K be a cyclic extension. We consider 

i N 
O. + Gal(L/K) - U( L)/V(L/K) - U(K) -+ 0 

' The injectivity of i has just been proved. The surjectivity of N is 
' very well-known. Cf. (2.3). It remains to prove that KerN = Imi. That 

No 1. is the zero map is obvious. Suppose then that N(u) = 1. According 
* _, . 

to Lemma 4.6 there is any €_L such that u = s(y)y , wheres is a 
r generator of Gal(L/K). Write y = 'lf1v. Then 

s(,r~) sr(,rL) 
u::---- mod V(L/K) 

which concludes the proof. 

The next step (the third) of the proof of theorem 4.3 consists 

of two easy technical lemmata. 
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( 4.8) Lemma. 

Let L/K be a finite galois extension, and Ma sub galois extension 

of L. Then the induced map 

NL/M: V(L/K)-+ V(M/K) 

1s surjecti ve. 

Proof. Let H be the subgroup of G = Gal(L/K) corresponding to M. It 

suffices to show that g~u) € Im NL/M for g E G/H and u E U(M). Because 

NL/M: U(L) + U(M) is surjective there is an v E U(L) such that 

NL/M( v) = u. Let g E G be any lift of g. 

Then 
N ( &.tl) 

L/M v 
= JI hg(v) 

hEH h(v) 
= Ilg(g- 1hg)(v) = g{u) 

ITh( v) u 

which proves the lemma. 

( 4 • 9 ) Lemma. 

Let L/K be a finite galois extension, and Ma subextension of L 

such that L/M is cyclic. Then the following sequence is exact 

i N 
o+ Gal(L/M) + U(L)/V(L/K)-+ U(M)/V(M)K) + 0 

Proof. i is injective because Gal(L/M) is a subgroup of Gal(L/K). 

Cf. (4.5); and N is surjective because N : U(L)-+ U(M) is 

surjecti ve. Now consider the following commutative diagram 

i N 
0 + Gal(L/M) + U(L)/V(L/M) -+ U(M) + 0 

II ! 
i N 

0-+ Gal(L/M) + U(L)/V(L/K) -+ U(M)/V(M/K) + 0 

where the two arrows in the mi~dle and on the right are natural 

projections. Let u€ U(L) and suopose N(u) € V(M/K). Because of 

lemma (4.8) there is a v € V(L/K) such that N(v) = N(u), i.e. 

N(uv- 1 ) = 1, Using exactness of the top line (4.7) we obtain that 

uv- 1 = s(1T 1 )Jir1 mod V(L/M) for a certain s € Gal(L/M) which implies 

u = s('IT 1 )1T~1 mod V(L/K). This proves the lemma. 

The final step in the proof of Theorem 4.3 is an induction argument. 
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( 4. 10) Proof" of theorem 4. 3. 

Let L/K be an abelian extension; M/K a subextension such that L/M 

is cyclic. By induction we can assume that the funda.mental sequence 

for M/K is exact. Now consider the following diagram 

Gal(L/M) = Gal(L/M) 
,j. ,j. 

0 + Gal(L/K) + U{L)/V(L/K) + U(K) +O 

,j. ,j. 11 
0 + Gal(M/K) U{M)/V(M/K) + U(K) + 0 

,j. ,j. 

0 0 

The second column is exact according to lemma (4.9). The first 

column is exact and so is the third row (induction hypothesis). It 

follows that the second row is also exact. 

( 4 • 11 ) Remark • 

It is not difficult to extend theorem 4. 3 to cover the case of 

nonabelian (totally ramified) galois extensions. The ftmdamental exact 

sequence then becomes 

(4.11.1) 0 + Gal(L/K)ab + U(L)/V(L/K) + U(K) + 0 

ab where G denotes the maximal abelian quotient of G. Indeed let M be 

the field corresponding to <G,G> , the commutator subgroup of 

G = Gal(L/K). By induction on the number of elements of <G,G> we see 

that it suffices to prove the exactness of the sequence (4.11.1) in the 

case that M' /K is a sub galois extension of L/K containing M such that . 

L/M' is abelian, and such that the fundamental sequence for M'/K is exact. 

We now have the following diagram. 
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0 
4-

Gal( L/M') = Gal( L/M') 

4- 6 i' 
N 

Gal( L/K)ab 
]. 

-+ U(L)/V(L/K) -+ U(K) -+ 0 

4- a i' y 
N II 

0 -+ Gal(M' /K)ab U(M' )/V(M' /K) -+ U(K) -+ 0 

,I, 

0 

The map a is an isomorphism and Bis the zero map because M' contains 

M, the field of invariants of <G,G>. It follows that i is injective, 

as the bottom row is exact by induction hypothesis. The second column 

is exact by an argument identical with the one used in (4.9), using 

theorem (4,3) instead of (4,5). It follows that the second row is 

exact. 

5. "ALMOST'' THE RECIPROCITY HOMOMORPHISM 

(5.1) In this section K is a local field with finite residue field of 

q elements, and L/K is a finite (abelian) galois extension which is 

totally ramified. Let K and L be the maximal unramitied extensions - nr _ nr 
of Kand Land let K and L be their completions. The extension _ - nr nr 
L /K is also (abelian) galois and totally ramified and the galois nr nr _ _ 
group Gal(L /K ) is naturally isomorphic with Gal(L/K) (Cf. (2. 2)). nr nr 

The algebraic closure of the residue field k of K is denoted k ; 
- s 

it is the residue field of K and K • nr nr 
We use the symbol F for the Frobenius morr;>hism of Gal(ks/k) for 

their canonical li:rts in Gal(K ft{.) and Gal( L /L) and also for their nr nr 
extensions to K 

nr 
and L . We can now form the following diagram 

nr 
(cf. section 4). 

(5.1,1) 

X 
i' 

a --
0-+ Gal(L/K)-+ U(L )/V(L /K ) --+ nr nr nr 

- - -
0-+ Gal(L/K) + U(L )/V(L /K ) nr nr nr -

.. i' 

b - D 

y 
,I, 

U(K ) + 0 nr 

U(K ) 
nr + 0 
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where F-1 is the homomorphism which associates F(u)u- 1 to u E U(K }; 
nr 

X, Y, C, Dare the appropriate kernels and cokemels. 

(5.2) Lemma. 

(i) 

(ii) 

(iii) 

F-1: U(K ) -+ U(K ) is surjective; F-1: A(K ) -+ A(K ) is nr nr nr nr 
surjecti ve. -
F-1: V(L /K ) -+ V(L /K ) is surjective. nr nr nr nr -
Ker(F-1: U(K ) -+ U(K )) = U(K). nr nr ... 

Proof. (i) Use the filtration of U(K ) by the subgroups tf ( K ) nr nr 
of units congruent to 1 mod rr~. The induced homomorphisms 

-+ k* ~ U(K )/U1(K ) 
s nr nr 

U(K )/u1(K ) * F-1: ::: k 
nr nr s 

k -+ k ~ tf(K )/~+ 1(K ) 
s s nr nr 

F-1: u°cic )1u°+ 1<K >:::. nr nr 

are 

* * q-1 F-1: k -+ k s' XH- X s 

F-1: k -+ k x ...... a 
s' x--x s 

which are surjective because k is algebraically closed. The first 
s 

part of (i) now follows by a wellknown argument concerning homomorphisms 

of comolete filtered abelian groups. For the second part of (i) one 

uses the filtration by the rrKnA(K ) of A(i ). The induced maps nr nr 
F-1: k -+ k are (again) the ma-ps xi-+ xq-x, s s 

(ii) Now let t(x)x- 1 EV(~ ;i ). It suffices to show that nr nr ,.. 
these elements are in Im(F-1). Choose y € U(L ) sueh that nr 
(F-1)(y) = x. Then we have 

because F and t commute as L/K is totally ramified. 

(iii) Let u E U(K ) , and F(u) = u. We write u = u' + 7T w·' with nr o K, 1' 

u0 E Knr; F(u) = u yields Fu~= u~ mod rrK. Hence we can 

write u = u0 + rrKw 1 with u0 EK; then Fu= u yields 

Fw = w , , . n, ,.. 
Now write w1 = rrK u1 , u1 € U(Knr); this gives Fu1 = u 1; 

repeating this process with u 1 instead of u gives 

n, 
u = u + rr 

o K 

n 1 +7 
u 10 + rrK w2 , u0 ,u10 € K. Continuing in this way 
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we see that u € K mod 'IT~ for all n, and hence that u € U(K) because 

K is complete. 

(5.3) Definition of (j,(L/K): U(K) + Gal(L/K), 

Let L/K be totally ramified abelian. One forms the diagram (5.1.1). 
The rows of this diagram are exact by theorem (4.3). Therefore there is 

(by the snake lemma) an induced homomorphism g: Y + C as shown. According 

to (5.2) (iii), Y = U(K). Further because L/K is totally ramified, F 
commutes with every t E Gal(L/K) so that F-1: Gal(L/K) ➔ Gal(L/K) is 

the zero map, which permits us to identify C with Gal(L/K). We therefore 

obtain "the almost reciprocity homomorphism" 

(j,(L/K) : U(K) + Gal(L/K) 

for abelian totally ramified extensions L/K. 

(5.4) Proposition 

( i) ¢( L/K) is surjecti ve, 

(ii) Ker(¢( L/K)) ·= NL/K( U(L)), 

Proof. (i) To prove (i) is suffices to show that D = 0 in diagram 5.1 .1 
.... -

which follows from the surjectivity of F-1: U(L ) + U(L ) nr nr 
( Lemma. 5. 2 ( i)) 

(ii) It is clear that NL/K(U(L)) c a(X)(cf. diagram .... 5.1.1). Now 

let the element x € X be renresented by x € U(L ) • Then .... ... · nr 
(Fx)x-1 € V(L /K ) (because x € X). According to lemma (5.2) (ii) nr nr 

( ) ( ) _, ( ) _, . 
there is an y € V L /K such that Fy y = Fx x • Or, in other words, 

1 _ 1 nr nr 1 
F(xy-) = xy , which implies xy- € U(L) by lemma (5.2) (iii). And 

therefore NL/K(x) = NL/K(xy-1) € NL/K(U(L)); i.e. a(x) € NL/K(U(L)). 

This concludes the proof of the proposition. 

(5.5) Theorem. 

For every finite abelia.n totally ramified extension L/K we have an 

isomorphism 

(j,(L/K) : U(K)/NL/KU(L) + Gal(L/K) 

These isomorphisms are functorial in the sense that if L/K is totally 

ramified abelian extension and M/K a subextension of L/K then the following 

diagram is coimnutative 
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U(K)/NL/KU(L) + Gal(L/K) 

"' + 

U(K)/NM/KU(M) + Gal(M/K) 

Proof. The first statement is proposition 5.4. and the second statement 

follows from the functoriality of the connecting morphism g of 

the snake lemma. 

(5.6) It is convenient to have a slight extension of theorem (5.5) 
to the case of finite abelian (not necess.arily totally ramified) extensions 

L/K. Let F' be any lift in Gal(L /K) of the Frobenius morphism in nr 
Gal(k /k); let L' be the invariant field of F. Then L'/K is abelian s 
totally ramified and L' = L • Identifying Gal(L/K) and Gal(L'/K) nr nr ram 
in the canonical way we find a diagram. 

0 + Gal(L/K) + U(L )/V{L /K ) + U(K ) + 0 ram nr nr nr nr 

1 F'-1 1 F'-1 

... 
0 + Gal(L/K) + U(L )/V(L /K ) + U(K ) + 0 ram nr nr nr nr 

i i 
b 

C - D 

This, as in {5.4), yields an isomorphism. 

U(K)/NL'/K(U(L')) + Gal(L/K)ram = Gal(L'/K) 

But L!K = L.K for some finite unramified extension K /K and L.K /L 
n n n n 

and L!Kn/L are unramified extensions. Further NM'/M(U(M')) = U(M) 

if M' /M is an unramified extension (2. 3). Therefore N1 , /K(U(L')) = NL/K(U( L) ), 

~ich gives us an isomorphism 

(5.7) Theorem 

!:: 
+ Gal(L/K) ram 

For every finite abelian extension 1/K there is a canonical isomorphism 
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which is functorial in the sense that if M/K is a larger abelian extension 

(i.e L c M) then the following diagram commutes 

t 

Gal(L/K) ram 

t 

where the first vertical arrow is the canonical projection and the second 

one is induced by the canonical projection Gal(M/K) + Gal(L/K). 

Proof. Cf (5.6). The functoriality follows again from the functoriality 

of the snake lemma. 

6. THE LUBIN-TATE EXTENSIONS 

As in the previous section let K be a local field with finite 

residue field k of q elements. Let nK = w be a uniformizing element of K; 

A(K) is the ring of integers of K. 

( 6. 1) Definition of the Lubin-Tate extensions L /K. 
--- m 

Let f(X) be a polynomial, over A(K) of the form 

f(X) = xq + n(aq_,xq- 1+ ••• + a2x2)+ wx, a2 , ••• ,aq-l € A(K) 

We use /m) (X) to denote the m-th iterate of f(X); i.e. f( 1 \x)= f(X), 

f(m\x) = r(/m-l)(X)). As X divides f(X), it follows that f(m-l)(X) 

di vi des f(m) (X). For each m let Am be a root of /m) (X) which is not a 

root of f(m-l)(X). We can choose (and shall do so) the Am in such a way 

that f(Am) = Am-l for each m > 2. We define the Lubin-Tate extensions 

L /K as L = K(A ) • 
m m m 

It is the aim of this section to -prove the following theorem 

concerning the extensions L /K. 
m 

( 6. 2) Theorem. 

(i) LJK is totally ramified abelian. Its galois group is isomorphic 

to U(K)/Um(K). 
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(ii) N1 /K(U(Lm)) = lf-(K) 
m 

The proof of this is in several steps, 

(6.2) Lemma. L /K is totally ramified; A is a uniformizing element of L . 
m m m 

f_roof. f(m)(X)/f(m-l)(X) is an Eisenstein polynomial. 

The second step is to show that N1 /K(U(Lm)) c ~(K). To do this 
m 

we need a ''denseness of separable polynomials" lemma. 

( 6. 3) Lemma. 

. f" 1 n . .n-1 . Let k be an arbitrary ie d, g = X + an-1'k + ••• + a0 a polynomial 

over k such that (n, char(k)) = 1 if cha.r(k) # 0. Then there exists an 
. '\, 

r > 0 and a polynorrual g of degree.::_ r-1 such that the polynomial 

h = Xrg + g is separable (i.e. has only simple roots). 

Proof. 

If k has infinitely many elements, we can chooser= 1 and g equal 

to some suitable constant c E k. (For ~Xg+c) is indepenp.ant of c and has 

on~y finitely many roots). Suppose now thatjk = q, then~ t O (because 

(n, char(k)) = 1). Let x1 , ••• ,xn-i be the set of roots of~- The 

x 1 , ••• ,xn-l are all contained in some finite extension k' of k. Let 

--//. k' = qs, we can assume that q 8 > degree( g). Let h be the polynomial 
s+l 'v q 

( r = q ; g : = -X g( X) + 1) 

s+l 
If a is a root of ~, then we have either that a. is a root of x4 -Xq 

and then h( a) = 1, or we have that a is a. root of *' then a E k' , hence 

s 
aq = a., and also h(a) = 1. q.e. d. 

We are now in a position to prove the inclusion N1 /K(U(Lm)) c: t.fl(K). 
m 

( 6. 5 ) Theorem. 
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Proof', Every element of U( L ) can be written a.s a product uu' , where 
1 m 

u EU (Lm) and u' a (q-1)-th root of lmity, But 

( ) m-1 
N(u') = (u') q-l q = 1 

where we have written N for NL /K' Hence it suffices to show that 
m 

N (U 1 ( L ) ) c: lfl( K). This is clearly true for m = 1, we therefore assume m 

m > 2, Every element of u1(L) can be written as a sum 
m 

a. EA(K), A:=)., 
1 m 

with n = m(q-l)qm-l - 1 and v(x) > v(nm), so that (n, char(k)) = 1 

( m ~ 2; v denotes the normalized exponential valuation on K). Consider 

the polynomial d(X) = Xn + a 1x?-1 + ••• +a (same a. as in the sum above). 
n 1 

,J • 

Let@ be the reduction of d to a polynomial over k, Chooser and gas in 

lemma (6.4), let g be a lift of~ of the same degree as~- Let 

h : = Xrd + g, Then the reduction of h in k[X) has no multiple roots, 

hence all roots of hare in K • We can choose the constant term of nr 
h equal to 1, ~hich implies that the product of the roots z1 , •.• ,zt 

of h is equal to :!.. 1, and that theref'ore the roots of h are all units 

(of Knr). Then (1-z 1A).,,(1-zt).) = 1 + a 1A + ••. + anAn + x' with v(x') > 

v(nm) and u = 1 + a 1). + , •• + anAn + x = (1-z1A) ••• (1-zt).)(1+y) with 

v( y) ~ v( ,rm), Now N( l+y) € '[Jm( K). We have left to show that 

t 
N ( II ( 1 -z . ). ) ) € tr°"( K) 

i=1 l 

It suffices to show that N1 .K /K (II(1-zi).)) is in tr°"(Knr). This follows 
m nr nr 

from the commutativity of the diagram below and the :f'act that 

tf-(K ) n U(K) = t.f(K) (because K /K is unramified). nr nr 

L c:__ L .K 
m m nr 

(6.5.1) lNL /K lNL .K /K 
m m nr nr 

K c.- K nr 

(The commutativity ia proved as follows, Let x E L , then x has the same 
m 

minimum polynomial over K as over K because K /K is unramified e.nd nr nr 
L /K is totally ramified, q.e.d). 

m 
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In particular we have that the minimum ~olynomial of X € L .K is 
m nr 

f(m)(X)/f(m- 1)(X) EK [X]. This yields 
nr 

(6.5.2) N( 1-z.l.) 

(Thanks to the commutativity of the diagram (6.5.1) above we can and 

shall use N for both N1 /K and N1 .K /K indiscriminatedly). 
m m nr nr 

Setting Y·: 
l 

-1 = z. we obtain from (6,5.2) 
l 

t t 
N ( TI ( 1 -z . .l. ) ) = 

i=1 l 
( TI 
i=, 

t 
= TI 

i=1 

= 1 + 

( ) m-1 
} q-1 q z. 

l 

t 
II 

i=1 

(because Tiz. = + 1 and m > 2) 
l -

_The zi are units, therefore the yi too, and also the f(m- 1 )(yi), as 

is easily seen from the form of f(m-l)(X). It follows that it suffies 

to nrove that 

The automorphism FE Gal(K /K), the Frobenius automorphism, permutes nr 
the roots z. of h, hence Falso permutes they .• The homomorphism F 

l l 

reduces to x,... x q mod ('IT) • There fore there exists a permutation a of 1 , ••• , t 

such that 

mod ('IT) 

because xf-+ f( x) also reduces to xi-+ x4 mod ( ,r}. 

For any two elements a, b E A(K ), if a= b mod ('!Tr) with r > 1 then nr 

aq = bq mod ('ITr+l) and 'ITas = '!Tb9 mod ('1Tr+ 1)(s = 1, ••• ,q-1) hence also 

f(a) = f(b) mod.('ITr+l}. 



Applying this to the relation 

we obtain 

f ( m) ( ) - f( m-1 ) d ,.,,. m) 
y i = y0 ( i ) mo ,,. 

Taking the product over i we find 

t 
TI 
i=1 

rrt (m-1)( ) t 
f Ycr(i) = II 

i=l i=l 
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q.e.d. 

The next step (the third) consists of proving that L /K is galois. 
m 

To do this we need the following elementary but powerfull lemma of Lubin 

and Tate [ 7] . 

( 6 • 6 ) Lemma. 

Let K be a local field with finite residue field of q elements. Let 

1T be a fixed uniformizing element of K. Let f(X), g(X) E A(K)[[X]] be 

two power series over A(K) such that 

f(X) = 1TX = g(X) mod(X2 ) 

f( X) = g( X) = Xq mod('IT ) 

Then for every a E A(K) there exists a unique power series [a ](X) f,g 
over A(K) such that 

f([a.)f (X)) = [a)f (g(X)) ,g ,g 

[ a] f (X) = ax mod( x2) ,g 

Proof. One defines inductively polynomials F (X) of degree r such that r 

f(F (X)) = F (g(X)) mod(Xr+l) 
r r 

Fr(X) = Fr+l(X) mod(Xr+ 1 ) 

One can take F1(X) =ax.Suppose we have found Fr(X), for a certain r> 1~ 

r+1 
One then sets Fr+l(X) = Fr(X) + ar+ 1X where ar+ 1 is yet to be determined. 

One has 
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These equations show that a. must satisfy r+1 

f(F (X))-F {g(X)) 
a xr+ 1 _ _ ......;r ___ r __ _ 

r+1 r+1 
1T - 1T 

mod( xr+2) 

which proves in any case (inductively) that Fr+1(x) is unique mod (xr+2 ) 

for all r, thus taking care of the uniqueness assertion concerning 

[a]f (X). ,g 

It remains to show that ar+1 € A(K), which follows from 

f(F (X)} - F (g(X}) = (F (X)}q - F (Xq) = 0 mod(,r) 
r r r r 

The series (alf,g(X) is the limit of the Fr. This ~roves the lemma. 

( 6. 7) Corollary. 

(i) [,r]f(X) = f(X) 

(ii) [a]f([b]f(X}) = [ab]f{X) 

(iii) [1lf,g([1Jg,f(X)) = X 

a, b E A(K) 

Here we have written [a]f for [a1f,f" All these equalities are proved 

by showing that the lef't and right hend side both satisfy the same 

characterizing properties of lemma (6.6). E.g.[,r]f(X) = 1TX mod(X2 ) 

and f([,r]f(X)) = [n]f(f(X}); on the other hand f(X} = 1TX mod (X2 ) and 

f(f(x)) = f(f(X)). Therefore [,r]f(X) = f(X) by the uniqueness assertion 

of ( 6 .6). 

Now let f = Xq + ,r(qq_ 1xq-1+ ••• +a2x2) + ,rX, as before. Taking f = g 

in the lemma above, we have for every u E U(K} a power series [u]f(X) 

over A(K) such that f[u]r'X)) = [u]f( f(X)). It follows that if Am is a 

root of f(m)(X) which is not a. root of f(m-i)(X), then [u]f(Am), which 

is in K(A) = L because L .is complete and [u]f(X) E A(K)[[X]], 

is anothe~ (-oos:ibly the s:me) root of f(m) (X), which is not a root of 

f(m-i)(X). To prove that L /K is galois it suffices to show that by 

varying u we get enough di~ferent roots [u]f(Am) of f(m}(X). A preliminary 

lemma for this is 
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( 6. 8) Lemma. 

Let f(X) be a power series over A(K); let 1/K be a finite extension 

of Kand suppose that there is a A EL with v1(A) >Osuch that 

f(A) = 0. Then there exists a ~ower series g(X) over A(L) such that 

f(X) = (X-A)g(X). 

Proof. Write f(X) = (X-A)g + b mod(:if) with b E A(L) (division with 
-- n n n 

remainder in A(L)[Xl.Now f(A) = 0 9 therefore v1 (bn) ~ nv1 (A) 

which goes to infinity as n + m because v1(A) > O. We also have 

f(X) = (X-A)gn+1(X) + bn+ 1 mod(Xn+ 1}. And therefore 

(6.8.1) 

Write 

Using (6.8.1) one obtains 

which implies 

v1(a0 A) ~ nv1(>.) 

v1(a1A-a0 ) ~ nv1(A) 

v1 (a0 ) ~ (n-1v10,) 

v1(a 1 ) ~ (n-2)v1(A) 

It follows that the sequence ~(X) has a limit g(X) as n + m, 'Then 

f{X) = (X-A)g(X) mod (Xn9An) for all n; i.e. f(X) = (X-A)g(X). Which 

proves the lemma. 

We are now in a position to prove that LiK is galois and to 

calculate its galois group. 

(6.9) Proposition. 

The extension L /K is galois; its galois group is isomorphic to 
m 

U(K)/tfl{K). 
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Proof. We first remark that if u, u' € U(K), then (cf.(6.7)) 

(6.9.1) 

Suppose we have proved that 

• .m m 1 ( ) m-1 Because U(K)/u (K) has (q-l)q - elements and [L : K) = q-1 q 
m 

it follows from (6.9.2) that L /K is galois. The assignments E Gal(L /K) 
m m 

i-+ class of any u such that s(A ) = [u]f(A ) then defines an isomorphism m m 
of Gal(L /K) vith U(K)/ifl(K) (in virtue of (6.9.1)). It therefore remains m 
to prove (6.9.2). Using (6.9.1) we see that it suffices to prove that 

(6.9.3) [uJf(A) = A • u - 1 mod(Um(K)) m m 

Let s E G(K,L-+ O). Then s(Am) is a root of [u];r<x) - X, because s acts 

continuously. Further f(r)(A ) is a root of [u]f(X) - X for all r < m 
m ( ) -

because [u]f(f(X)) = f([u]f(X)). Therefore all the roots off m (X) 

are roots of [u]f(X) - X. Applying (6.8) repeatedly we find a 

factorisation 

• Comparing the coefficients of X on the left 

and on the right we see that 

m u - 1 = 'IT .a 

where a is the constant term of g(X). As g(X) has integral coefficients 

(cf.(6.8)) the proposition is proved. 

(6.10) Corollary. 

NL /K(U(Lm)) = tr°-(K) 
m 

Proof. 1'his follows from ( 6. 9) and theorems ( 5. 5) , ( 6. 5). 

(6.11) Remark. 

The Lubin-Tate extensions L depend only on the choice ofrr , not 
• . m q l q-1 2) on the choice of the polynomial f(X) = X +11',aq_ 1x + ••. +a2X +1rX. 

Indeed, let g(X) be another polynomial of the same form, According to 
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Lemma (6.8) there is a unique -power series [1 ]f (X) such that 
2 ,g 

[1]f (X) = X mod(X) and f[1]f (X)) = [1]f (g(X)). Now let U be ,g ,g ,g m 

a root of g(m) (X) which is not a root of g( m-i} (X), then we see that 

[1Jf a(µ} is a root of f(m)(X) which is not a root of f(m-i}(X) 
'r, m 

(look at v([1]f (µ))for this last statement). But[1]f (µ)EK(µ), 
,g m ,g m m 

and therefore Lm c: K(µm) and comparing degrees we see that Lm = K(µm). 

We can therefore talk about the Lubin-Tate extensions associated 
to ir. 

( 6. 12 ~ Remark. 

1T EK is a norm from each Lm. Indeed N1 /K(-Am) = ,r because the 

constant term of f(m)(X)/f(m-i)(X) is equal :o ,r, and f(m)(X)/f(m-l)(X) 

is irreducible. 

7. LOCAL CLASS FIELD :THEORY. 

In this section K is again a local field with finite residue 

field. Let Kab be the maximal abelian extension of K. The first aim 

of this section is to calculate Gal(Kab/K) and to give a description 

of Kb. We then proceed to "extend" the "almost reciprocity homomorphism'' a -

<f>(L/K) : U(K)-+- Gal(L/K) of §5 to a "reciprocity homomorphism" 

r(L/K) : K + Gal(L/K) defined for all abelian L/K. And finally we give 

the explicit formula for r(L/K) due to Lubin and Tate (and Dwork). 

( 7. 1) Theorem. 

Gal(K b/K) = U(K) ; Gal(K b/K) = U(K) x Z a ram a 

Proof. For every finite abelian extension L/K we have an isomorphism 

(7.1.1) <f>(L/K): U(K)/NL/K(U(L}) + Gal(L/K)ram 

Taking the limit over all finite abelian L/K we obtain an isomorphism 

(7. 1.2) 

(cf. §3.) Now U(L) is compact and NL/K is continuous. It follows that 

NL/K(U(L)) is compact and therefore closed in U(K). As it is also a 
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subgroup of finite index (by (5.7)), it is also open in U(K); i.e. there 

exists an n (depending on L) such that NL/K(U(L)) ~ tf(K). By theorem 

(6.2) there exists for every m €Nan abelian extension L /K such that 
m 

N1 /K(U(Lm)) = t.f(K). It follows from these facts that the projective 
m 

limit on the left of 7.12 is equal to U(K). This proves the first 

part of the theorem and also the second in virtue of ( 3. 4 ). 

Fix a l.llliform.izing element 'IT of K. I.et L be the Lubin-Tate extensions 
m 

corresponding to this choice of 'IT • (Cf'. ( 6. 1) and ( 6. 11)). 
We write L =UL. 

'IT m 
m 

7.2. Corollary Kb=L.K a 'IT nr 

Proof'. L'Tl'.Knr is an abelian extension and therefore contained in Kab" 

We have a commutative diagram with exact rows. 

0 -+ Gal(K b/K) + a ram cp(~\ 
U(K) d..1 

<P(L~/K) 
~ 

-+ Gal(K /K)-+ 0 nr 

\ 
0-+ Gal(L .K /K) -+ Gal(L .K /K) + Gal(K /K) + 0 

'IT nr ram 'IT nr nr 

where a is the natural projection, a' is induced by a, and the 

homomorphisms 4>( K JK) and 4>( L_.K /K) are obtained by taking the projective 
au II nr 

limit of the homomorphisms tf,(L/K) where L/K runs through the abelian 

subextensions of Kab and L'Tl'.Knr respectively. 

Now tf>{L .K /K) is the projective limit of the isomorphisms 
'IT nr ~ 

tf>{Lm/K) : U(K)/N1 /K(U(Lm)) + Gal(Lm/K) and as NL /K(U(Lm)) = Um(K) 
m m 

by theorem (6.2) we conclude that <P(L .K /K) is an isomorphism. The 
'IT nr 

homomorphism tf>(Kab/K) is also an isomorphism (Theorem 7,1) and therefore 

a' is an isomorphism and thus a too, which concludetthe proof of the 

corollary. 
... 

(7.3) The groun U(K)x Z is the completion of K* = U(K) x Z with res~ect 

to the topology of o~en subgroups of finite index. (Open in the sense 

of the topology on K* induced by the valuation on K). When regarded 

as this completion we shall write~ for U(K) x Zand K* ~~will be 

the natural inclusion. 
~ ... 

One can of course choose many isomorphisms K* = U(K) x Z =Gal(Kab/K). 
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It is the aim of the next few subsections to show that we can choose 

this isomorphism in such a way that the kernel of 

is precisely NL/K(L*) c K* for every abelian L/K (where the last map 

is the natural projection). 

(7.4) Preliminary definition. 

Let L'/K be a totally ramified abelian extension; TIK a uniformizing 

element of K which is a norm from L'; and K /Kan unramified (abelian) 
n 

extension of K. We define a homomorphism r: K* + Gal(L'.K /K) as follows. 
n 

{we should of course write r 1 ,.K or something similar)o 
n 

U(K) E u1-+ r(u):= <p(u- 1) E Gal(L'/K) = Gal(L'.K /K) = Gal(L'.K /K) 
n n n ram 

where Fis the Frobenius automorphism of Gal(L'.K /L') and ur-+ <p(u) 
n 

is the homomorphism defined in (5.5)0 

The first step now is to show that this definition does not depend 

on the choice of L' in L'.K, and to show that for this definition 
n 

one does have the kernel property mentioned in 7o3. To this end we 

need the following lemma, which is also usefull further on 

(7.5) Lemma. 

Let L/K be an abelian extension. The index of NL/K(L*) in K is 

equal to the munber J Gal(L/K). 

Proof. Let KL be the maximal unramified extension of K contained in L. 

We have [L : K1 ] = -/: (U(K)/NL/K(U(L))) (cfo (5.7)). There is an 

exact diagram.. 

0 ➔ U(L) ➔ L* 
VL 

z ➔ ➔ 0 

1 NL/K lNL/K lx fL/K 

0 ➔ U(K) ➔ K* 
VK 

z 0 ➔ 
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where fL/K:= [KL: K]. Hence ,i'(K*/NL/K(L*)) = J(U(K)/NL/K(U(L))).fL/K= 

= [L:KL] [~ :K] = J Gal(L/K). 

(7.6) Lemma. 

Let L" c L' .K be any other totally ramified abelian extension such 
n 

that L".K = 1 1 .K (i.e. [L':K] = [L":K]; same situation as in the 
n n 

definition of r above). Then 

r 
Ker(K* ➔ Gal(L'.Kn/K) ➔ Gal(L"/K)) = NL"/K(L"*). 

Proof. Lemma (7.5) implies that it suffices to show that NL"/K(L"*) c Ker( •• ) 

For this it suffices to show that NL"/K(rr") E Ker( ••• ) when 1T 11 

is a uniformizing element of L" (Because NL"/K(U(L")) c Ker(r) 

because of (5.7) or because the uniformizing elements of L" 

generate L"*). Let L" be the invariant field of r(u)F. Such an u E U(K) 

exists because r(U(K)) = Gal(L'.K /K) • Cf. (5.7). Write rr" = x1T 1 
n ram 

where rr' EL' is such that NL'/K(rr') = TIK. We have 

= N , / (x - l ) N ( ") 
L • Kn Kn . L" /K TI 

It follows that 

NL'.K /K (x) E U(K) 
n n 

Now r(u)F(rr") = TI". Therefore using F(TI') = TT' and xTT' = rr" we have in the 
,,.. ,,.. 

group U(L' ) = U(L" ) nr nr 

¢(u-1 )(rr') = r(u)(rr') _ r(u)F(rr') 
1T I - TT' TI' 

= r(u)F(x- 1 ) • 

F(x-1) 
F(x-l) mod V(L' /K ) 

- -1 nr nr 
X 

Hence by the definition of the isomorphism~ in (5.5) we must have (in 

virtue of (7.6.1) and (7.6.2)) 



and hence 

NL'.K /K (x) - u 
n n 

which is the identity on L". This proves the lemma 

,7 .. 7) Corollary. 
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The definition of r in (7.4) is independant of the choice of L'. 

More precisely if we had used an L" as in (7.6) instead of L'for the 

definition of r; i.e. if we had defined 

NL"/K( ,r") + F' 

where F' is the Frobenius automorphism of Gal(L" .K /L"), then we would 
n 

have obtained the same homomorphism r. 

(7.8) Definition of the reciprocity homomorphism. 

Choose a uniformizing element 'If of K. Let L be as before (cf.(7.1)) 
'If 

then Kab = L .K (7.2). Now define 
TI nr 

U(K) 3 ui-r r(u) = ¢(u-1) E Gal(L /K) = Gal(K b/K ) 
'If a nr 

,r 1-+- F E Gal (K b/L ) 
a 'IT 

(7.9) Remarks. 

There are several remarks to be made concerning this definition. 

1. As 'If is in N1 /K(L!) for all m,cf.(6.12), this definition agrees with 
m 

the one given in (7,4). 
2. This definition is independant of the cho~ce of TI. (By (7.7) and (7.9) 

Remark 1 

3. The homomorphism r is determined by its values on the uniformizing 

elements of K. 
4. The homomorphism r is the restriction to K* of an isomorphism 

~* + Gal(Kab/K). Cf. (7.3) 
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(7.10) Theorem. 

Let L/K be an abelian extension, then we have 

Ker(K* ➔ Gal(Kab/K) ➔ Gal(L/K) = 

Proof. It suffices to prove that NL/K(L*) is contained in kernel 

(7.5). Let K be the maximal unramified extension of K contained n 
in L; let (K : K] = n. Let r be the reciprocity homomorphism n n 
for the base field K Then we claim that the following diagram 

n 
is commutative. N 

_]( /K 

(7.10.1) 

To see this, 

L' .K = L.K 
m m 

that K C K . n m 

L' 

K 

K* -~ K* n 

Gal(L/K ) --+ 
n 

G(L/K) 

let L' /K 

for some 

We have 

be a totally ramified abelian extension such 

u.nramified extension K /K of degree m.We can 
m 

the 

L 

following diagram of field extensions 

L' .K In 
K 

n 

L' .K = L.K m m 

K 
m 

Let FE Gal(L!K /L') be the Frobenius automorphism. Then Fn is the 
m 

that 

assume 

Frobenius automorphism of L!K /L'.K. Let n be a uniformizing element 
m n 

of K which is in NL'/K(L'*). Then (cf. (7.4)) 

(7.10.2) 

It remains to check that 

r ( u) 
n 

= r(NK /K(u)) for u E U(Kn) 
n 

To this end let u' E U(L' ) = U(L ) be a lift of u (for the norm map 
nr nr 
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... 
U( L -+ U( K )). The element u" = u'. Fu' , ... , Fn-1u' is then a lift of 

nr nr 
n-1 NK /K(u) = u.Fu, ... , F u. The element 

n 

r (u) E Gal(L' .K /K) = Gal(L'.K /K) is according to (5.5) and (7.4) 
n m m n n 

characterized by 

rn(u)(rrL,) u' 
-

,rL' 
Fnu, 

where TTL I lS any uniformizing element 

' F' Fn-1 u • u . • . . u 

F ' F2 ' Fn ' u . u . . . u 

mod V(Ln/Knr) 

of L'. 

u" 
= --

Fu" 

Hence 

mod V(L' /K ) nr nr 

But r(v) E Gal(L'.K /K) for v E U(K) is characterized by 
m m 

- v' 
- Fv' 

where v' is any lift of v. It follows that 

(7.10.4) r (u) = r(NK /K(u)) E Gal(L' .K /K ) c: Gal(L' .K /K )~ n m m m n 
n 

Taking account of (7.10.2) we have shown that the diagram 

(7.10.5) 

K* 
n 

t n 

Gal ( L ' . K / K ) m n 

K 

-+ Gal(L' .K /K) 
m 

is commutative , which implies the commutativity of (7.10.1). The kernel 

of r n in ( 7. 10. 1) is equal to NL/K ( L*) according to ( 7 .6 ) . It follows 
n 

that 

(cf. (7.10.1)). This proves the theorem. 
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(7.11) Corollary. 

The norm subgroupSof K* (i.e. the subgrou:J;:$NL/K(L*) where L/K is 

an (abelian) finite extension of K) are precisely the open subgrou];:$of 

finite index. 

For every open subgroup R of finite index in K there is one abelian 

extension L/K such that the kernel of r : K* + Gal(Kab/K) + Gal(L/K) is 

precisely R. 

Proof. A norm subgroup is necessarily open of finite index. The rest 

of the corollary follows from (7.10) and the fact that 

r : K* + Gal(Kab/K) is the restriction to K* of an isomorphism 

k* ~ Gal(Kab/K). 

The last part of this section is devoted to the explicit determination 

of the reciprocity homomorphism r a la Lubin-Tate. The main tool is 

( 7 . 12 ) Lemma ( [ 7 ] Lemma 2 ) 

Let TT and TT' be two uniformizirig elements of K, and let f(X) ,g(X) 

be polynomials of degree q such that f(X) = g(X) - Xq mod TT and 

f(X) = TIX mod (x2 ), g(x) = TT'X mod x2 • Let TT'= u1r. Then there exists ... 
a formal series 1"(x) E A(K )[ [X]] such that nr 

(7.12.1) ~F(X)) = 1'°([u]f(X)), 1'(x) = £X mod (x2 ), for a certain EE U(K ). nr 

where Fis the Frobenius automorphism in Gal(K /K) and also its extension ... nr 
to K and t,4-F(X)) is the series obtained from i'"(x) by letting Fact 

nr' 

on the coefficients of (X). 
A A 

Proof. Because F-1 U(K ) + U(K ) is surjective there is an EE U(K ) 
nr nr nr 

such that u = F(£)E- 1 • Define t1(X) = EX, then 

F -"- 2) ·t l (X) "i v1 ( [u]f(X)) mod (X • 

(7.12.2) 

Now suppose we have already found tJ- (X) such that r 

. +1 
mod (r ) 

.,._ 
.Cl- _..r+ 1 ( ) we define ffr+ 1(x) = vr(X) + br+1x , where br €'A Knr is yet to be 

determined. Now 



(7.12.3) 

Let 
(7.12.4) 
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r+1 
Then we must choose br+ 1 such that F(br+1) = c + br+1u Writing 

ar+ 1 must satisfy (use F(e:) = e:u) 

(7.12.5) -(r+1) 
F(ar+1) - ar+1 = (e:u) c 

.... .... 
Such an a +1 exists because F-1: A(K ) + A(K ) is surjective r nr nr 

(cf. Lemma (5.2)). Let \,~(X) = limc.9-(x). This proves the lemma. 
r 

7. 13) Corollary ( [ 7 ] Lemma 2) 
.... 

Under the conditions of lemma (7.12) there exists a i\x) E A(K )[[X]] nr 
such that ( 7. 12. 1) holds and more:,over 

(7.13.1) 

Proof. We first remark that [TT]f(X) = f(X) and [TT' ]g(X) = g(X). Cf.(6.7) (i) 

Let ~(X) be as in (7.12). We consider 

where t-1(x) is defined by t(¢- 1(X)) = X = t-1(f(X)). (One uses (6.7) (i) 

and (6.7) (ii) to obtain the last equality). The series h(X) has its 

coefficients in A(K) because 

hF(X) = c,F(( [1r' Jf?((1"-1l(x))) = ¢F(f( [u]/(¢-1)F(X)) = 

= ~F(f(J-i(X))) = h(X) 

(for the one but last equality substitute (19-- 1)F(X) for X in (7.12.1). 

Further 
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and 

Therefore h(X) is a power series of the type considered in~.@. And 

there exists therefore a unique power series [1Jg,h(X) such that 

[1Jg,h(X) = X mod (X2 ) and g([1]g,h(X)) = [1]g,h(h(X)). Now let 

(7.13.3) 

then (7.12.1) also holds for C-' (because [1] h(X) has its coefficients g, 
in A(K). Consider the series 

We have 

g(.Q,(X)) = g([1]g,h(t([a]f(t- 1 ([1]b~g(X)))))) = 

= [1]g,h(h'(~[a]f( - 1([1Jh,g(X)))))) = 

= [1Jg,h(?([TT']f([a]f(1'-- 1([1lh,g(x)))))) = 

= [1]g,h(~([a]f([n']f(t- 1([1]h,g(X)))))) = 

= [ 1 ] g, h ( ,J- ( [a] f (~ - l ( h) ( [ 1 ] h, g ( X) ) ) ) ) = 

= [1] h(f([a]f(t- 1([1]h g(g(X)))))) = 
g, , 

= £(g(X)) 

where we have used h(X) = ~([TI 1 ] f(t- 1 (X))) twice and [ 1]-1h(X) = [ 1] h (X) g, ,g 

and [rr']f([a]/X)) = [rr'a]/X) = [a]/[n'}(X)). Cf. (6.7) 

Thus t(X) satisfies the conditions which define [a] (X) so that g 

(6.6) .Q,(X) = [a]g(X), which proves the corollary. 

(7.14) Definition. 

We now define a homomorphisms K* + Gal(L .K /K) as follows 
TI TT nr 



s1/rr) = FE Gal(L .K /L) 
1T nr 7r 

(The Frobenius automorphism) 

= [u- 1]~ E Gal(L .K /K ) for u E U(K) 
J. 7r nr nr 
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where [u- 1]~ is the automorphism of Gal(L .K /K ) = Gal(L /K) which 
J. 7r nr nr ,r 

acts on the Am as A 1-+ [u- 1]f(A ). (i.e. substitute A in the series m m m 

(7.15) Theorem ([6] theorem 3 and its corollary) 

The homomorphisms is independent of 7r and coincides with the 
1T 

reciprocity homomorphism r defined in (7,8). 

Proof.'. We first show that s,r ( ,r' ) = s,r, ( 7r' ) , for all uniformizing elements 

,r, TI' EK. This suffices to prove the first part of the theorem. 

Now on K c K .L =Kb= K .L, both s (,r') end s,r 1 (,r') nr nr TT a nr TT ,r 

induce the Frobenius automorphism. On LTI,, sTT, (,r') is the identity 

Thus it suffices to show that s (:,r') is the identity on L , ; i.e. we 
1T TT 

have to show that 

for all m, where 

s(1r')(A')=A' 7r m m 

A' is a root of g(m)(X)/g(m~l)(X) where g(X) 
m 

manic polynomial of degree q such that g(X) = Xq mod TT' and 

g(X) = TT 1 X mod(X2 ). .... 

is a 

Let 1"(x) be a power series over A(K ) such that (7 .12. 1) and nr 
(7.13.1) hold. Then because [7r]f.'(X) = f(X) and [TT']g = g(X) we have because 

of (7 .13. 1) that J-0, ) is a root of gm(X)/g(m-l\x). 
m 

Nows (TT') = s (u)s (,r) = s (u). F,where Fis the Frobenius automorphism 
TT TT TT 'If 

in Gal(L .K /L) c Gal(K b/K). Thus ,r nr ,r a 

s1/,r' )(A~) = s,r(u).F(1'-(Am)) = 

= s,r(u)(J'([u]f(Am))) = 

= to/Hulf(s (u)(A ))) 
,r m 
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The second assertion of the theorem now follows easily because for every 

uniformizing element 1T EK both r(TT) ands (rr) are the Frobenius on 
1T 

K and the identity on LTT. nr 
q_. e.d. 

8. CONCLUDING REMARKS 

In this section we add a few extra comments to the foregoing. 

(8.1) "Almost the reciprocity morphism" for arbitrary finite galois 

extensions L/K. 

Let L/K be any finite galois extension. Then the diagram of 5,1 

(or rather, a similar diagram), gives an isomorphism 

+ Gal(L/K) /<Gal(L/K) , Gal(L/K)> ram ram 

(8.2) Functoriality of the reciprocity homomorphism 

Let r : K* + Gal(K b/K) be the reciprocity homomorphism for the 
K a 

base field K. Then if L/K is a finite galois extension of K, the 

following diagram lS commutative 

L* 
NL/K 

K* 

(8.2.1) l 1 rL rK 

a b 

Gal(Lab/L) + Gal{Kab'L/1) + Gal(Kab/K) 

where a is the natural projection and bis the restricting of 

automorphisms of Kab'L to Kab' 

In the case of an unramified extension L/K this has already been 

proved (commutativity of diagram (7.10.5). It thus suffices to prove 

the commutativity of (8.2.1) in the case that L/K is a totally 

ramified abelian extension. 

We have to show that aor1 = r0L/K' I.e. we only have to worry 

about abelian extensions of L "arising from some subextension of ,, 
Kab/K. 
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Let M/K be a totally ramified abelian extension and K /Kan 
n 

unra.mified extension of K. The extension L.M/K is abelian. By enlarging 

Kn if necessary we can assume that the maximal unramified subextension 

of L.M is contained in K. By means of a similar argument as in §3 n 
we find an abelian extension M'/K such that M' contains Land such 

that M'.K = L.M.K for some unramified extension K which contains m m m 
K. n 

M' M' .K = L.M.K 

L.M -----L.M.K 
------- m m 

/; I " 
L ------1------- L. K --.------- L. K 

n m 

M -1----------t------ M.K 

/ / n 

K - K_ -----' · K ----------L.M n K 
m 

We can now use M'/L and L.K /L to define rL: L* + Gal(M'.K /L) 
m m 

and M' /K and K /K to define rK : K* + Gal(M' .K /K). m m · 

Let u E U(L) and u' E U(M~r) a lift of u for NM' /L U(M~r) +U(Lnr)• 
nr nr .... ..... 

Then u' is also a lift of NL/K(u) for NM' /K : U(M~r)+ U(Knr)' 
nr nr 

which proves that r 1(u) = rK(NL/K(u)) for u E U(L), in view of the 

definition of rL(u). Cf. §5 and (7.4). 
And if n' is a uniformizing element of M', we have that 

rL(NM'/L(TT' )) 

rK(NM' /K( TT')) 

= F E Gal(M' .K /M') = Gal(M' .L.K /M') and m m 

= F E Gal(K .M' /M') 
m 

(8.3) Ramification. 

q_.e.d. 

Keeping track of ramification in the fundamental exact seq_uence 

and the diagram 5.1.1 one sees that ~(L/K) and hence also r is 

ramification preserving, in the sense that rK: K* +Gal(L/K) maps 
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Ui(i)into Gali(L/K), where Gali(L/K) is the i-th ramification subgroup 

of Gal(L/K) (upper numbering). 

(8.4) The case K = ~ 

In the case~=\, taking TI= p, f(X) = (X+1)P - 1,. one finds f(m)(X)= 
m 

(l+X)P - 1. The elements of A then are of the form~ - 1, where m m 

tm is a primitive pm-th root of unity. In this case one has [u]f(X) = 

(1+X)u - 1 for each p-adic integer u. Hence [u]f(, -1) = ,u - 1 and 
m m 

the formula (7.14) becomes the explicit cyclotomic reciprocity formula 

given by Dworkin [ 1 ] • 
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