Oct. 3, 1973

ERASMUS UNIVERSITEIT ROTTERDAM
Nederlandse Economische Hogeschool
ECONOMETRISCH INSTITUUT (Dept. Math)

Report T318/M

~m&90AL CLASS FIELD THEORY IS EASY

Michiel Hazewinkel




LOCAL CLASS FIELD THEORY IS EASY™

Michiel Hazewinkel

Contents
Page
1. Introduction 1
2. Precis of notations, conventions and results assumed known L
3. The decomposition theorem 5
4. Local fields with algebraically closed residue field T
5. "Almost the reciprocity homomorphism" 13
6. Lubin-Tate extensions 17
T. Local class field theory 25
8. Concluding remarks 36

1. INTRODUCTION

Let K be a local field with finite residue field. "Local class
field theory", for the purposes of this paper consists of the (more or less)
explicit description of the maximal abelian extension Kab of X, of the
calculation of the galois group Gal(K,;/K); i.e. the proof that
Gal(Kab/K) e , the completion of X* with respict to the topology
given by the open subgroups of finite index in K , and finally of a

*
description of the isomorphism L Gal(Kab/K). "Local class field theory"

in this paper does not indude e.g. a calculation of the Brauer group
Br(K).

It is the aim of this paper, which is partly expository in nature,
to show that "local class field theory" in this sense can be treated in
a fairly small number of pages (38) and without using any of the involved
(but powerfull) machinery which one "usually" finds in this connection.
In particular we need nothing at all (not even in a concealed way) of the
cohomology of groups. All the facts which we assume known are collected
in §2. A large part of this péper (53, 5, 6 and most of §7) is closely
related to my 1969 amsterdam thesis.

*) Part of the work for this paper was done while the author enjoyed a
Fullbright-Hays travelling grant (Febr/March 1973).



The remaining part of this introduction consists of an outline
of the structure of the theory.

First let K be a local field with algebraically closed residue
field, and let L/K be an abelian (necessarily totally ramified) extension
of K. Then one forms the following sequence.

i N
(1.1) 0 - Gal(L/K) — U(L)/V(L/K) — U(K) » 0

where U(L), U(K) are the units of L and K resvectively; V(L/K) is the
subgroup of U(L) generated by the elements of the form s(u)u‘1,
u € U(L), s € Gal{L/K); the homomorphism i associates the class of

s(TrL)(er)_1 to s € Gal(L/K), where . is a uniformizing element of L;

L

and N is induced by the norm map NL/K'

The first main result on which the theory rests is
(1.2) Theorem. The sequence (1.1) is exacta

The proof of this theorem (cf. §l) presented here, is, as far as
I know, completely new. The o0ld proof in [4] still used some cohomology
of groups theory.

Next, let K be a local field with finite residue field and L/K
an abelian extension of K. Taking maximal unramified extensions and
completing them we obtain an abelian extension of local fields with

algebraically closed residue fields Lnr/Knr with galoisgroup
Gal(Lnr/Knr) canonically isomorphic to Gal(L/K)ram, the ramification

subgroup of Gal(L/K). We can now form the diagram with exact rows.

0 + Cal(L/K)__— U(L_)/V(L_ /K )= U(K_) + 0

l F-1 l F-1 l F-1

0 -+ Gal(L/K)ram-—-» U(inr)/V(inr/Iznr)—-r U(}Enr) >0

where F is a lift of the Frobenius automorphism F € Gal(ks/k), k
S
the algebraic closure of k. Because Ker(F-1: U(Knr) -+ U(Knr) = U(K)

and the induced map F-1: Gal(K/K)r - Gal(L/K)ram is the zero map,
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we obtain by means of the snake lemma a homomorphism
¢(L/K) : U(K)—> Gal(L/K) -

This homomorphism turns out to be surjective and its kernel is
NL/KU(L)' It is also functorial in L. These homomorphisms then look
remarkably like part of the ''reciprocity homomorphisms'

*
r(L/K) : K -+ Gal(L/K) which we are trying to construct,

The next step is to construct a number of abelian totally
ramified extensions Lm/K which have maximally small norm groups.
These are the Lubin-Tate extensions first constructed in [7 ). In case
K = Qp they are the extensions generated by the p-th roots of unity.

They are obtained as follows. Choose & uniformizing element

Ty of K. Let f(X) be a polynomial of the form

= v@ q-1
£f(X) = xX* + vK(aq_1X L ETRRL ) + meXs vhere a, € A(K), the

integers of K, and q is the number of elements of k, the residue field
. . -1
of K. Let ™ (X) be inductively defined as £™(x) = £(£{® (X)) ana 1et
-1
(m)(x) (m )(X)

Am be a root of f which is not a root of f . One defines

L = K(%m). One now proves

(1.3) Theorem. (i) (u(L)) = UMK) = {u€ UK)] uz1 modmo}.

N
K
Lm/K .
(ii) Lm/K is an abelian totally ramified extension of

-1
degree (q-1)q.

The "almost reciprocity homomorphism' then gives N /K(U(Lm)) = t™K),
m
and using this (and the fact that Gal(Knr/K) = Z is topologically freez
the "almost reciprocity homomorphism” yields that Gal(Kab/K) = U(K) x 2
= = . ins to "extend' the "almost
and that Kab Lﬂ'Knr’ where L. i Lm It remains to
reciprocity homomorvhism" ¢: U(K)—* Gal(Kab/K)ram to a reciprocity
*
homomorphism r : K > Gal(Kab/K) such that the kernel of

* * . .
r: XK - Gal(Kab/K) + Gal(L/K) is precisely NL/K(L ) for sbelian extensions

L/K. It turns out that the map u** ¢(u.1) can indeed be extended in this

vay.



Finally we give the "explicit" desecription of r : K*-—’ Gal(Kab/K),
due to Lubin and Tate. This final part of §7 is based on [7].

Over the years I have had many valuable conversations with various
people about "local class field theory". It remains for me to thank them,
especially Dr. A. Menalda ( to whom I owe a main part of the idea
of the proof of (1.3) (ii)), Prof. J. Neukirch (who challenged me to
get rid of all cohomological considerations), Prof. F. Oort, and the

many people who urged me to write this stuff down.

2. PRECIS OF NOTATIONS, CONVENTIONS AND RESULTS ASSUMED KNOWN.

In this section we have collected the results without proofs which
will be used in the following. They can all be found in a standard text
like [8], Parts I, II and [9].

2.1. Notations (for local fields)

A local field K is a field K with a (normalized exponential)

valuation Ve K’.l + Z on it. We define;:
A(K) = {x € X| vK(x) > 0}, the ring of integers of K,
U(K) = {x € K| VK(x) = 0}, the units of K ,
T 8 uniformizing element of K; i.e. an element of K such that
VK(‘H’K) = 1, |
m(K) = {x € K| vK(x) > 0} = nKA(K), the maximal ideal of A(K).

U™(K) = {x € U(K)]| x

it

1 mod(-;r?)}.

k = A(K)/m(K), the residue field of K. We shall always assume
that k is perfect.

K* = K \ {0}, the invertible elements of K.

Finally # S denotes the number of elements of a set S.

2.2. Extensions of local fields

Let L/K be a finite galois extension. The galois group is denoted
Gal(L/K). This is a solvable group if the residue field is finite or
algebraically closed.Cf.[ 8] Ch. IV §2. (If L/X is not galois one denotes
with T(K,L + Q) the various isomorphisms of L into a (large enough)

algebraically closed field Q). Let K; be the maximal unramified




subextension of L/K. The subgroup Gal(L,KL) is denoted Gal(L/K)
and is called the ramification subgroup of Gal(L/K). Gal(L/K)

is a normal subgroup of Gal(L/K). If M/K is a galois extension containing

L/K then the natural map Gal(M/K) + Gal(L/K) maps Gal(M/K)ram into

Gal(L/K)rm.

Let Knr be & maximal unramified extension of K. The completion

-~

Knr’ is a local field with as residue field ks’ an algebraic closure

of k. We now choose once and for all an algebraically closed extension
Q of K ~and all extensions of K are supposed to be contained in Q.
Ifx is flnlte, then Ga.l(K /K) Z (the completion of Z with respect
to the topology of subgroups of finite index), and we use F to denote
the Frobenius automorphism in Ga.l(ks/k), to denote its Sanonical lift

in Gal(Knr/K) and its extension to & K-automorphism of K ..
Kab denotes the maximal abelian extension of K. If k is finite

Knr c Kab"

If L/K is finite galois, then Lnr/Knr is a galois extension with
its galois group Gal(Lnr/Knr) canonically isomorphic to Gas.l(L/K)ram
(restrict s € Gal(Lm_/Knr) to L).

2.3. Two results on norm maps.

(i) Let K be a local field with algebraically closed res:.due field,
and L/K a finite extension of K. Then NL/K L - K and

L/K. U(L)— U(K) are surjective (ce.[8 1cCh. V).
(ii) Let K be a local field with finite residue field and L/K an

unramified galois extension then NL/K u(L) » U(K) is surjective

(ce.[8 1 ch. V§2).

3. THE DECOMPOSITION THEOREM

Let K be a local fleld (in the sense of §2). We fix some algebraically
closed field Q containing Knr' All composite fields are supposed to be
taken in this large field.

(3.1.) Theorem.

lLet L/K be a finite galois extension, where K is a local field with




finite residue field. Then there is a totally ramified extension
' t = 1. = -
L'/X such that Lip =LK =LK =1L .]If Gal(L/K)ramiz ZGal(L/K)

we can take L'/K to be an (abelian) galois extension.

(Here ZG denotes the centre of the group G).

Proof. Let K, be the maximal unramified subextension of L/K.

The galois group Gal(KL/K) is eyclic with F (Frobenius)as a
L generator. Let F' be any lift in Gal(L/K) of F. Let
r be the order of F', Let Kr be the unramified extension
of degree r of K. Then KL <K. Define F" € Gal(L.Kr/K)
L by means of the conditions F"lKr = Frobenius € Gal(K_/K)

and F"lL = F' € Gal(L/K). Then F" is welldefined. Let
L' be the invariant field of F". Then L'/K is totally ramified and
LIK_ = L.K_.
r r
Finally if Gal(L/K)ram'C:ZGal(L/K), then G(L.Kr/K)ramtz ZGal(L.Kr/K)

which implies that the subgroup of Gal(L.Kr/K) generated by F" is normal,

so that L' is galois over K.

(3.2.) Remark.
Theorem (3.1) is also true for local fields K with perfect (but not
necessarily finite) residue fields. Cf. [4], 2.8 or [5], no.2. The

proof is different in those cases.

(3.3.) Corollary.

ab = Knr'L

where L/K is a maximal totally ramified abelian extension of K.

Let Kab be the maximal abelian extension of K. Then K

Proof. Use infinite galois theory and the fact that Gal(Knr/K) = 7
is topologically free,
(3.4) Corollary.

Gal(Kak/K)ram = lim Ga.l(L/K)ram vhere L/K runs over all finite

abelian extensions and the maps Gal(L/K)ram -+ Gal(M/K)ram are induced
by the natural projections Gal(L/K) -+ Gal(M/K) if M c L;
Gal(Kak/K) = Gal(Kab/K)ram xZ.



L. LOCAL FIELDS WITH ALGEBRAICALLY CLOSED RESIDUE FIELD.

In this section K is a local field with algebraically closed

residue field.

(L.1) Let L/K be an abelian galois extension (necessarily totally

ramified). We consider the following sequence of abelian groups -

i N/
(Lk.1.1) 0 + Gal(L/K) ~ U(L)/V(L/K) — u(x) + v

where U(L) is the group of units of L; U(K) is the group of units of K;
V(L/K) is the subgroup of U(L) generated by the elements of the form

sSu

=, P uE U(L), s € Gal(L/K); is induced by the norm map U(L) =+ U(K)

N/

(It is clear that N_, (V(L/K)) = {1}); and i is defined es

L/K
STI.

i(s) = class of —;é (this does not depend on the choice of "L
L

).
(4.2) Lemma.

The map i is a homomorphism of groups
St(WL)__S(t("L)) t(ﬂL) :s(wL) pgni)

T = t(“L) . T = ) . ﬁL mod V(L/K)

Proof.

because t(wL) is another uniformizing element of L; i.e. t(wL) = um,

for a certain u € U(L),

(4L.3) Theorem on the fundamental exact sequence.

Let L/K be an sbelian extension of the local field K (with
algebraically closed residue field). Then the sequence (L4.1.1)

i
0 + Gal(L/K) » U(L)/V(L/K) » U(K) +0

is exact. This sequence will be called the fundamental exact sequence.

The proof of theorem (L.3) is divided into several steps. We first
prove the injectivity of i. To do this we use the following elementary

lemma on abelian groups.



(4.4) Lemma.

Let G be a finite abelian group and g € G an element of G.

Then there exists a subgroup H of G such that the following conditions
are- fulfilled

(i) G/H is cyeclic _
(ii) If r : G » G/H is the canonical map, then ord(g) = ord(r(g))

whereord( ) denotes the order of a group element.

Proof. Let g = 8 G,p be the decomposition of G into its Sylow subgroups,
and let g = (Kp)p under this decomposition. We write Gp as a
direct sum of cyelic groups

i i

= 1 r =
Gp-Z/(p )@ ... 8z/(p "), g, = (gp(ﬂ,...,gp(r)%
For n € Z,,let vn(n) denote the number of factors p in n; i.e.

v_(n)
n=p P . mwith (p,m) = 1 and let

wp(gp) = max {in - vp(gp(n))}

n
ord(&p) =P
Now choose an index b such that vp(gp) =i, - vp(gp(b)). And let
i
H = ® z/(p *) Gy

P .
1n#b

H =®H <G
o)

s : 1 i cal ord =ord(r and
Then if T Gp > Gp/Hp is the canonical map, (s,p) & p(gp))

consequently ord g) =ordr(g))

(4.5) Proof of the injectivity of i : Gal(L/K) = u(L)/V(L/K)

Let 1 # g € G = Gal(L/K); and let H be a subgroup of G such that
the two assertions of (4.4) hold. Let g be the image of g in G/H,
then Z # 1; let T be a generator of G/H and let f be any lift in G of
?; then if g = T
g=frh for a certain h € H.



Suppose that i(g) € V(L/K). Then we have (using(h.2))

(b.5.1) £(my) . h(m,) o £'h, (u; )
W S &

where i = 1,2,...,0rd(f); and hj runs through the elements of H;

and u.. € U(L).
1]

Now because

(h.5.2) fin(n) _ i) () Ph(uw) () hlw)
Tl u fi-1h(u) : fi-—2h(u) *** fh(u) ° h(u) ° u

we can rewrite (L4L.5.1) as

£(r°)  h(m.) h(uh)
(4.5.3) L _ L _ftlv) g w € U(L), u € U(L)
“i L v n€H "

Let M be the invariant field of the subgroup H of G. Tsking NL/M on

both sides of equation (L4.5.3) we obtain

(4.5.4) F(m)

vhere m, = NL/M("L) and w = NL/M(w). Because M/K is cyclic, equation

1

(4.5.4) implies that v§ w ! € K, which is impossible because M/K is

totally ramified and r <ord(f) = [M : K], as é # 1.

The second step of the proof of theorem (4.3) consists of the
proof of the exactness of the fundamental sequence in the case that
L/K is a cyclic extension. To do this we need the "classical" version
of "Hibert 90" (cf.[3], §13, Satz 11k).

We repeat the proof for completeness sake,
4.6. Lemma.("Hilbert 90")

Let L/X be a cyclic galois extension, and suppose that N_, (x) = 1

L/K
for a certain x € L, Then there exists an y € L such that

x = §§ , where s € Gal(L/K) is a generator of the galois group.
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Proof. Let a be any element of L. One forms

-1

-1 2 - - - - - -
vy=a+s(a)x + s(a).s(x 1).x +... + g° 1(a).sn 2(x 1)...s(x 1).x 1

where n =ordf{s). We then have

s(y) = s(a) + sg(a)s(x-1)+ cee + sn—1(a).sn—a(x‘1)...s(x-1) +

+ sn(a).sn°1(x_1)...s(x_1)

n - - - —
As s”(a) = a ana s 1(x 1)...s(x 1)x - 1, it follows that

s(y)x! =y
If y were equal to zero for all a; then letting a run through a basis
of L over K we would have a nontrivial solution (viz.
(1,x-1, s(x°1)x—1,... sn_z(x‘1)... s(x—1)x'1) for an nxn system of
linear equations with nonzero determinant. Therefore y # 0 for suitable

a, which means that x = s(y)y-1.

(4.T7) Proof of the exactness of the fundamental exact sequence in the

cyclic case
Iet L/K be a cyclic extension. We consider

(h.7.1) 0.+ Gal(L/K) -——»1 U(L)/V(L/K)—-Pi U(K) = o0

The injectivity of i has just been proved. The surjectiv&ty of N is
very well-known. Cf. (23). It remains to prove that KerN = Imi. That
Ne¢ i is the zero map is obvious. Suppose then that N(u) = 1. According
to Lemma L4.6 there is an y E.L* such that u = s(y)y°1, vhere s is a
generator of Gal(L/K). Write y = T.v. Then

ry I'L
) s(wL) s (wL
u = = mod V(L/K)
r ™
WL L

which concludes the proof.
The next step (the third) of the proof of theorem 4.3 consists

of two easy technical lemmata.
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(4L.8) Lemma.

Iet L/K be a finite galois extension, and M a sub galois extension

of L. Then the induced map

NL/M : V(L/K) » V(M/K)

is surjective.
Proof. Let H be the subgroup of G = Gal(L/K) corresponding to M. It

suffices to show that gGBl € Im NL/M for g € G/H and u € U(M). Because

NL/M : U(L) + U(M) is surjective there is an v € U(L) such that

NL/M(V) = u. Let g € G be any 1lift of g.

Then

v (8D o one(v) | el me)(v) | E(w)
L/M' v hEH h(v) Mh(v) u

which proves the lemma.
(L.9) Lemma.

Let L/K be a finite galois extension, and M a subextension of L
such that L/M is cyclic. Then the following sequence is exact
i N
0+ Gal(L/M) =+ U(L)/V(L/K) » U(M)/V(M)K) +~ 0
Proof. i is injective because Gal(L/M) is a subgroup of Gal(L/K).
Cf. (L4.5); and N is surjective because N : U(L) + U(M) is
surjective. Now consider the following commutative diagram
i N
0+ Gal(L/M) ~+ Uu(L)/V(L/M) -+ U(M) =+ o0
| { |
I N
0+ Gal(L/M) + U(L)/V(L/K) = U(M)/V(M/K) > 0
where the two arrows in the middle and on the right are natural
projections. Let u € U(L) and suopose N(u) € V(M/K). Because of
lemma (L.8) there is a v € V(L/K) such that N(v) = N(u), i.e.
N(uv“) = 1, Using exactness of the top line (L4.T7) we obtain that
-1

uv = = s(WL)/WL mod V(L/M) for a certain s € Gal(L/M) which implies

u = s(TTL)T\’-1 mod V(L/K). This proves the lemma.

L

The finel step in the proof of Theorem 4.3 is an induction argument.
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(L.10) Proof of theorem k.3.

Let L/K be an abelian extension; M/K a subextension such that L/M
is cyclic. By induction we can assume that the fundamental sequence

for M/K is exact. Now consider the following diagram

0 0
¥ +
Gal(L/M) = Gal(L/M)
+ ¥
0 + Gal(L/K) > u(L)/v(L/K) » U(K) - 0O
+ + I
0 + Gal(M/K) =+ U(M)/V(M/K) + B(K) + O
+ +
0 0
The second column is exact according to lemma (L4.9). The first

column is exact and so is the third row (induction hypothesis). It

follows that the second row is also exact.
(4.11) Remark.

It is not difficult to extend theorem 4.3 to cover the case of
nonabelian (totally ramified) galois extensions. The fundamental exact

sequence then becomes

(4.11.1) 0 » Gal(L/K)®® + U(L)/V(L/K) + U(K) + 0

where Ga'.b denotes the maximal abelian quotient of G. Indeed let M be

the field corresponding to <G,G> , the commutator subgroup of

G = Gal(L/K). By induction on the number of elements of <G,G> we see

that it suffices to prove the exactness of the sequence (4.11.1) in the
case that M'/K is a sub galois extension of L/K containing M such that
L/M' is abelian, and such that the fundamental sequence for M'/K is exact.

We now have the following diagram.
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0
Gal(L/M') = GaltL/M')
+ B : + N
Gal(L/K)%® - U(L)/V(L/K) + U(K) » 0
¥ a vy N I
0> Gal(M'/K)ab > Uu(M')/v(M'/K) = U(K) =0
+
0

The map & is an isomorphism and B is the zero map because M' contains
M, the field of invariants of <G,G>. It follows that i is inJjective,
as the bottom row is exact by induction hypothesis. The second column
is exact by an argument identical with the one used in (4.9), using

theorem (4,3) instead of (4,5). It follows that the second row is
exact.

5. "ALMOST" THE RECIPROCITY HOMOMORPHISM

(5.1) In this section K is a local field with finite residue field of
q elements, and L/K is a finite (abelian) galois extension which is

totally ramified. Let Knr and Lnr be the maximal unramified extensions

gf Khand L and let Knr and Ihr be their completions. The extension
Lnr/Knr is‘alsg (abelian) galois and totally ramified and the galois
group Gal(Lnr/Knr) is naturally isomorphic with Gal(L/K) (Cf. (2.2)).

The algebraic closure of the rfsidue field k of K is denoted ks;
it is the residue field of Knr and Knr'

We use the symbol F for the Frobenius morphism of Gal(ks/k) for
their canonica} lifts in Gal(Knrﬁ() and Gal(Lnr/L) and also for their
extensions to Knr and Lnr' We can now form the following diagram

(cf. section k).

a
X —_— Y -
¥ v RN
- T ° \
0 + Gal(L/K) -+ U(Lnr)/V(Lnr/Knr) — U(Knr) > 0

(5.1.1) 11-“-1 _1F-J_ - - —‘“lir:i"‘/

—_— -

e

0~ Gal(L/K) -~ U(Lnr)/V(Lnr/Knr) — U(Knr) + 0
g v +

~ . b
."‘)C — D

ks
\

\
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1

where F-1 is the homomorphism which associates F(u)u to u € U(Knr);

X, Y, C, D are the aporopriate kernels and cokernels.,

(5.2) Lemma.

(i) F-1: U(Knr) > U(Knr) is surjective; F-1: A(Knr) -+ A(Knr) is

surjective,
(ii) F-1: V(Lnr/Knr) > V(Lnr/Knr) is surjective,

(1i1) Ker(P-1: U(K_ ) > U(K_)) = U(X).

Proof. (i) Use the filtration of U(Knr) by the subgroupsUn(Khr)

of units congruent to 1 mod ﬂ;. The induced homomorphisms

-~

1,2 - * * - ~ 1,2
F-1: U(Ker)/U (Knr) =k, k= U(Knr)/U (Knr)
F-1: U“(Knr)/un*‘(xnr):z kg > kg = Un(Knr)/Un+1(Knr)

are

* * -
F-1: k. + k , x+ x37)
S S

F-1: k_ + k_, x> x%-x
S S

which are surjective because ks is algebraically closed. The first

part of (i) now follows by a wellknown argument concerning homomorphisms
of comolete filtered abelian groups. For the second part of (i) one

uses the filtration by the ";A(Enr) of A(inr). The induced maps

F-1: ks - ks are (again) the maps x+ x3-x,

nr’ “nr
these elements are in Im(F-1). Choose y € U(Lnr) such that

(ii) Now let t(x)x"1 € V(L__/K__). It suffices to show that

(F-1)(y) = x. Then we have

tly)y - Ftly) t(y)y=1 _ tF(y) F(y)y=1 _ tx
(F‘1)( y ) F(y) . ( y ) t(y) . ( y ) X

because F and t commute as L/K is totally ramified.

(iii) Let u € U(Knr)’ and F(u) = u. We write u = ué +m Y;, with

K
. - 3 1 = ! .
u € Ky F(u) = u yields Fu! = ul mod m . Hence we can
write u = ug + "Kw1 with ug € K; then Fu = u yields
Fw1 =w,.
n -

: 1 i s _
Now write w, = “K uy, v, € U(Knr)’ this gives Fu, = ugs

repeating this process with u, instead of u gives

n n1+1

u=u +7 u + T w u ,u
K 27 s

o°%10 € K. Continuing in this way
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we see that u € K mod WE for all n, and hence that u € U(K) because

K is complete.
(5.3) Definition of ¢(L/K) : U(K) + Gal(L/K).

Let L/K be totally ramified abelian. One forms the diagram (5.1.1).
The rows of this diagram are exact by theorem (L4.3). Therefore there is
(by the snake lemma) an induced homomorphism g : Y = C as shown. According
to (5.2) (iii), Y = U(K). Further because L/K is totally ramified, F
commutes with every t € Gal(L/K) so that F-1: Gal(L/K) + Gal(L/K) is
the zero map, which permits us to identify C with Gal(L/K). We therefore

obtain "the almost reciprocity homomorphism”
6(L/K) : U(K) + Gal(L/K)

for sbelian totally ramified extensions L/K.

(5.4) Proposition

(1) $(L/K) is surjective.

(ii) Ker(¢(L/K)) = NL/K(U(L)),

Proof. (i) To oprove (i) is suffices to show that D = 0 in diagram 5.1.1
which follows from the surjectivity of F-1: U(inr) > U(inr)
(Lemma 5.2 (i))
(ii) It is clear that NL/K(U(L)) < a(X)(cf. diagramk5.1.1). Now
let the element X € X be reoresented by x € U(Lnr)‘ Then

€ V(Lnr/Knr) (because x € X). According to lemma (5.2) (ii)

there is an y € V(Lnr/Knr) such that (Fy)y‘1 = (Fx)x_1. Or, in other words,
F(xy—1) = xy~1, which implies xy"1 € U(L) by lemma (5.2) (iii). And
L/K(U(L)); i.e. a(x) € N_, (U(L)).

This concludes the proof of the proposition.

(Fx)x"|

- -1
therefore NL/K(x) = NL/K(xy ) €EN L/K

(5.5) Theorem.

For every finite abelian totally ramified extension L/K we have an
isomorphism
¢(L/K) = U(K)/N,  U(L) + Gal(L/K)

These isomorphisms are functorial in the sense that if L/K is totally
ramified abelian extension and M/K a subextension of L/K then the following

diagram is commutative



16

U(K)/NL/KU(L) + Gal(L/K)
¥ ¥
U(K)/NM/KU(M) -+ Gal(M/K)

Proof. The first statement is proposition 5.k. and the second statement
follows from the functoriality of the connecting morphism g of

the snake lemms.

(5.6) It is convenient to have a slight extension of theorem (5.5)

to the case of finite abelian (not necessarily totally ramified) extensions
L/X. Let F' be any lift in Gal(Lnr/K) of the Frobenius morphism in
Gal(ks/k); let L' be the invariant field of F. Then L'/K is abelian
totally ramified and Lﬁr =L, Identifying Gal(L/K)ram‘and Gal(L'/K)

in the canonical way we find a diagram.

a
X —_—

v

0 > Gal(L/K)__ > U(L_)/V(L /K ) »U(K_) +0

l F'-1 1 F'-1 iF—1

-~

0 > Gal(L/K) _ *+ U(L_)/V(L /K ) »U(K_) +0

l {

b

C — D

This, as in (5.4), yields an isomorphism.

U(K)/N (u(L")) » Gal(L/K)ram = Gal(L'/K)

L'/K
But LJKn = L.Kn for some finite unramified extension Kh/K and L.Kn/L

and L!Kn/L are unramified extensions. Further N (u(M')) = u(M)

M'/M

. , . .o . Y =
if M'/M is an unramified extension (2.3). Therefore NL,/K(U(L )) NL/K(U(L)%

which gives us an isomorphism

o(L/K) : U(K)/N., (U(L)) 3 Gal(L/K)

L/X
(5.7) Theorem

For every finite abelian extension L/K there is a canonical isomorphism
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>

¢(L/K) : U(K)/N (u(n)) » Gal(L/K)ram

L/K

vhich is functorial in the sense that if M/K is a larger abelian extension

(i.e L © M) then the following diagram commutes

U(K) /N (U(L)) s Gal(L/K)
4 4
UK) /Ny, (U(L)) > Gal(M)/K)

vhere the first vertical arrow is the canonical projection and the second

one is induced by the canonical projection Gal(M/K) + Gal(L/K).

Proof. Cf (5.6). The functoriality follows again from the functoriality
of the snake lemma.

6. THE LUBIN-TATE EXTENSIONS

As in the previous section let K be a local field with finite

residue field k of q elements. Let vK = T be a uniformizing element of K;

A(K) is the ring of integers of K.

(6.1) Definition of the Lubin-Tate extensions L /K.

Let f(X) be a polynomial over A(K) of the form

-1

£(x) = xT + “(aq_1xq + ...+ 32X2)+ X, 8psees8y € A(K)

We use f(M)(X)‘to denote the m-th iterate of f(X); i.e. f(1)(X)= £(X),
#m 3y = 2™ (x)). as x aivides £(X), it follows that £™ ') (x)
divides f(m)(x). For each m let Am be a root of f(m)(X) which is not a
root of f(m_1)(X). We can choose (and shall do so) the A in such a way
that f(lm) = A for each m > 2. We define the Lubin-Tate extensions

m-1
Lm/K as L K(Am).

It is the aim of this section to prove the following theorem

concerning the extensions Lm/K.

(6.2) Theorem.

(1) Lm/K is totally ramified abelian. Its galois group is isomorphic
to U(K)/U™(K).
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(ii) NLm/K(U(Lm)) = U™(K)

The proof of this is in several steps.

(6.2) Lemma. Lm/K is totally ramified; Xm is & uniformizing element of Lm.

(m)(x)/f(m"l)

Proof. f (X) is an Eisenstein polynomial.

The second step is to show that N (U(Lm)) < U™K). To do this

Lm/K
we need a 'denseness of separable polynomials" lemma,

(6.3) Lemma.

let k be an arbitrary field, g = o+ an_1x“‘1+ ves + aoa polynomial
over k such that (n, char(k)) = 1 if char(k) # 0. Then there exists an
. Y .
r > 0 and a polynomial g of degree < r-1 such that the polynomial

N, . .
h = Xrg + g is separable (i.e. has only simple roots).

Proof.

If k has infinitely many elements, we can choose r = 1 and g equal
to some suitable constant ¢ € k. (For gE{Xg+c)is,independant of ¢ and has
only finitely many roots). Suppose now that jk = a, then g% £ 0 (because

(n, char(k)) = 1). Let Xys.++5X _; be the set of roots of %%. The

-1

Xyseee X are all contained in some finite extension k' of k. Let

n-1
# k' = g%, ve can assume that q° > degree(g). Let h be the polynomial

+1
(r=q"""3%:=-x%gx)+ 1)

s+1 s+1
.= x@ _ 49 dh _ a2 _,9y48
n:=x? g - X0+, Bax® xHE
dh St a
If a is a root of 3x> then we have either that a is a root of X -X
and then h(a) = 1, or we have that a is a root of %%, then a € k', hence
s
a? = a, and also h(a) = 1.

q.e.d.
We are now in a position to prove the inclusion N /K(U(Lm)) = UN(K).
m

(6.5) Theorem.

NLm/K(U(Lm)) c U™(K)
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Proof. Every element of U(L ) can be written as a product uu', where
u€vu (L ) and u' a (q—1)-th root of unity. But
(a-1)q™"
N(u') = (u')*~ =1

where we have written N for NL /K Hence it suffices to show that
m

N(U1(Lm)) < U™K). This is clearly true for m = 1, we therefore assume

m > 2. Every element of Ul(Lm) can be written as a sum

u= 1+ a1k + a2A2+ e * anln +x a € A(K), A: =X

with n = m(q-1)qm_1 - 1 and v(x) > v(™™), so that (n, char(k)) = 1

( m>2; v denotes the normalized exponential valuation on K). Consider
the polynomial d(X) = X© + a1Xn-1 *oota (same a; as in the sum above).
Let & be the reduction of 4 to a polynomial over k. Choose r and g as in
lemma (6.4), let & be a 1lift of E of the same degree as E. Let
ho:=Xx'd+ g. Then the reduction of h in k[X] has no multiple roots,
hence all roots of h are in Knr' We can choose the constant term of

h equal to 1, yhich implies that the product of the roots ZyseeesZy
of h is equal to + 1, and that therefore the roots of h are all units

(of K ). Then (1-z,A)...(1-2,}) = 1 +a X+ ... + anxn + x' with v(x') >

v(m™) and u = 1 + a1k + ...+ ankn + x= (1-z1k)...(1—ztl)(1+y) with
v(y) > v(m™). Now N(1+y) € U™(K). We have left to show that

t
N(T (1-z,0)) € u™(K)
i=1

It suffices to show that N (M(1-2.))) is in U™X ). This follows
Lm'Knr/Knr 1 nr

from the commutativity of the diagram below and the fact that
Um(Knr) n U(k) = UNK) (vecause Knr/K is unramified).

L L — L .K
m m

nr
(6.5.1) lN . 11*1
Lm/K Lm’Knr/ nr
K C Knr

(The commutativity is proved as follows. Let x € Lm’ then x has the same
minimum polynomial over K as over Knr because Knr/K is unramified and

Lm/K is totally ramified, g.e.d).
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In particular we have that the minimum polynomial of A € Lm.Knr is

£(m) %y /e(m=1) 1) € K__[x]. This yields

mn-1 _(m), -1
(6.5.2) N(1-31) = 2(077)0 5(5:%§Z—%T; » 2z € UK )
£ z

(Thanks to the commutativity of the diagram (6.5.1) above we can and

shall use N for both N /K and N, /X indiscriminatedly).
m m nr nr
Setting y.: = z;1 we obtain from (6.5.2)
t t (q-1) m-1 t f(m)(yi)
N(T (1-2,0)) = (T 2,) - =y
i=1 i=1 i=1 f (yi)
gty
= T &m0 (because Mz, = + 1 and m > 2)
i=1 f (v.) . -
t t
me™yy oo™
= 1 4+ 1=

t
1™y

1=1

The z. are units, therefore the ¥; too, and also the f(m'T)(yi), as

(m—1 )(

is easily seen from the form of f X). It follows that it suffies

to orove that

t
f™y - 1™V = 0 mea (¢
1 i=1

W= o

1

The automorphism F € Gal(Knr/K), the Frobenius automorphism, permutes
the roots z; of h, hence F also permutes the Y- The homomorphism F
reduces to x+r xq

such that

mod (m). Therefore there exists a permutation g of 1,...,t

[

f(yi) = Yg(i) mod ()

2 mod ().

because x> f(x) also reduces to xH x
For any two elements a, b € A(Knr), if a = b mod (n7) with r > 1 then

r+1)(

a? = 2 mod (wr+1) and ma° = M° mod (m s =1,...,0-1) hence also

f(a) = £(b) mod. (r™+1)
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Applying this to the relation

f . = .
(:yl)_. Yy ( ) mod (ﬂ»)
we obtain

f(m)(}'i) = f(m-”}f)(i) mod (m™)

T s
w
~~
g

[

q.e.d.

The next step (the third) consists of proving that Lm/K is galois.
To do this we need the following elementary but powerfull lemma of Lubin
and Tate [¥].

(6.6) Lemma.

Let K be a local field with finite residue field of q elements. Let
T be a fixed uniformizing element of K. Let f(X), g(X) € A(K)[[X]] be

two power series over A(X) such that
£f(X) =X = g(X) mod(Xz)

£f(X) = g(X) = X2 mod(m)
Then for every a € A(K) there exists a unique power series [a.f g](X)
2
over A(K) such that

f(lal, (X)) = [al, (&(X))

[a]f g(X) = aX mod(X2)

b

Proof. One defines inductively polynomials Fr(X) of degree r such that

£(F_(X)) = F_(g(X)) moa(x™")
r+1)

FX) 2 F_,,(X)  mod(X

r+1

One can take F1(X) = aX. Suppose we have found Fr(X), for a certain r> 1,

1 .
One then sets Fr+1(x) = Fr(X) +a_ X where a ; is yet to be determined.

r+1 r+
One has
PF_, (X)) = £f(F (X)) +  7a_ X" moa(x™*?)
Fr_‘_1(g(x)) = Fr(g(X)) +"N1aﬁ1xr+1 mod(Xﬁe)

AEATRA L NN e g
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These equations show that a must satisfy

r+1
f(F -
Lyt s (F.(x))-F_(&(x)) a2
r+1 - r+1 -
™ -
which proves in any case (inductively) that Fr+1(X) is unique mod (Xr+2)

for all r, thus taking care of the uniqueness assertion concerning

[a]f g(X).

It remains to show that a € A(K), which follows from

r+1
£(F (X)) - F_(&(x)) = (F.(x))? - F (x?) =0 mod(m)

The series [a]l,. (X) is the limit of the F_. This proves the lemma.

f.g
(6.7) Corollary.
(1) [m1.(x) = £(X)

(ii) [al([o]e(X)) = [av]l(X) &, b € A(K)
(iii) [1]f’g([1]g,f(x)) = X

Here we have written [a]f for [a]f g+ All these equalities are proved
k]
by showing that the left and right hand side both satisfy the same

characterizing properties of lemma (6.6). E.g.[w]f(x) = X mod(XE)

and f({n]f(x)) = [w]f(f(X)); on the other hand f(X) Z mX mod (x°) and
f(f(x)) = £(£f(X)). Therefore [ﬂ]f(X) = f(X) by the uniqueness assertion
£ (6.6).

-1

Now let f = Xq + 1r(qq_1)(q +...+a2X2) + mX, as before. Taking f = g

in the lermma above, we have for every u € U(K) a power series [u] (X)
over A(K) such that f[u] (X)) = [ul (f(X)) It follows that if A is a
root of f(m)(X) which is not a root of f( (X) then [u] (X ) which

is in K(Am) = L because L is complete and [u] ( X) € A(K)[[X]],

(m)

is another (possibly the same) root of £ 7(X), which is not a root of

f(m~ )(X) To prove that L /K is galois it suffices to show that by
(m)
(x).

varying u we get enough dlfferent roots [u]f(km) of T A preliminary

lemma for this is
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(6.8) Lemma.

Let f(X) be a power series over A(K); let L/K be a finite extension
of K and suppose that there is a A € L with vL(A) > 0 such that
(1)
£(Xx)

0. Then there exists a vower series g(X) over A(L) such that
(x-2)g(x).

Proof. Write f(X) = (X-A)gn *b, mod(X") with b € A(L) (division with

remainder in A(L)[X].Now f(A) = 0, therefore vL(bn) z.nvL(l)
which goes to infinity as n + ® because v

(A) > 0. We also have
£(X) = (X-A)g_ ,(X) + v nod(X™*"). And therefore

+1
(6.8.1) (X-A)(g,(X) - g, (X)) =0 mod (A", X7)

Write

- -1
gn+1(X) - gn(X) = aan + an_1Xn *ootaX+a

Using (6.8.1) one obtains
vL(aoA) z.nvL(l)

(a1k—a°) > nv, ()

L - L

which implies
v(a) > (n-tv, (1)

vL(a1) > (n-2)vL(A)

vL(an-1) 3_0

It follows that the sequence gn(X) has a limit g(X) as n + ©. Then
£(X) = (X-A)g(X) mod (X*,A\") for all n; i.e. £(X) = (X-A)g(X). Which
proves the lemma.

We are now in a position to prove that Lm/K is galois and to

calculate its galois group.

(6.9) Proposition.
The extension Lm/K is galois; its galois group is isomorphic to

u(K)/U™(K).




2k

Proof. We first remark that if u, u' € U(K), then (cf.(6.7))
(6.9.1) lulo(Tu'1.(x)) = [uu']y(x)

Suppose we have proved that

(6.9.2)  [ul () = [w'](X) = uzu moa(U™K))

Because U(K)/U™(X) has (1:1-»1)0:11“-1 elements and [Lm : K] = (q-1)qm‘1

it follows from (6.9.2) that Lm/K is galois. The assignment s € Gal(Lm/K)
= class of any u such that S(Am) = [u]f(lm) then defines an isomorphism
of Gal(Lm/K) with U(K)/U™(K) (in virtue of (6.9.1)). It therefore remains
to prove (6.9.2). Using (6.9.1) we see that it suffices to prove that

(6.9.3) [ulg(A)) = A = u =1 moa(u™K))

let s€ G(K,L + Q). Then s(xm) is a root of [u]f(X) - X, because s acts
(r)
(

continuously. Further f Am) is a root of [u]f(x) -Xforallr<nm
because [u]f(f(x)) = f([u]f(X)). Therefore all the roots of f(m)(X)
are roots of [u]f(x) - X. Applying (6.8) repeatedly we find a

factorisation

[ul (%) - x = £ (x)g(x)

But f(m)(X) =™+ ... . Comparing the coefficiénts of X on the left

and on the right we see that

u-1=1rm.a
where a is the constant term of g(X). As g(X) has integral coefficients

(cf.(6.8)) the proposition is proved.

(6.10) Corollary.

Proof. This follows from (6.9) and theorems (5.5), (6.5).
(6.11) Remark.

The Lubin-Tate extensions Lm depend only on the choice of 7 , not
q-1 2
X +o..ta X )

Indeed, let g(X) be another polynomial of the same form, According to

on the choice of the polynomial f(X) = x2 +‘n(aq + X,
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Lemma (6.8) there is a unique power series [1]f g(X) such that
- 2 s
1 = -
[ ]f,g(x) X mod(X“) and f[1]f’g(x)) (11, (&(X). Now let u_ ve

(m)(X) which is not a root of g(m-1)(x), then we see that
1l R(um) is a root of f(m)(x) vhich is not a root of f(m_1)(X)
(lock at v([1]f’g(um)) for this last statement). BUt[1]f,g(um) € K(u ),

a root of g

and therefore L < K(um) and comparing degrees we see that L = K(um).

We can therefore talk about the Lubin-Tate extensions associated
to w.

(6.12) Remark.

T € K is a norm from each Lm‘ Indeed NLm/K(—Xm) = 7 because the

constant term of f(m)(x)/f(m-1)(x) is equal to m, and f(m)(x)/f(m-1)(x)

is irreducible.

T. IOCAL CLASS FIELD THEORY.

In this section K is again a local field with finite residue
field. Let Kab be the maximal abelian extension of K. The first aim
of this section is to calculate Gal(Kab/K) and to give a deseription

of K ,. We then proceed to "extend" the "almost reciprocity homomorphism"

o(L/K) : U(K) » Gal(L/K) of §5 to a "reciprocity homomorphism"
r(L/K) : K -+ Gal(L/K) defined for all abelian L/K. And finally we give
the explicit formula for r(L/K) due to Lubin and Tate (and Dwork).

(7.1) Theorem.

-~

Gal(Kab/K)ram = U(K) ; Gal(Kab/K) ~ U(K) x 2

Proof. For every finite abelian extension L/K we have an isomorphism

(7.1.1) o(L/K): U(K)/N_, (U(L)) » Gal(L/K)ram

L/K

Taking the limit over all finite abelian L/K we obtain an isomorphism

(7.1.2) ¢ : Lim U(K)/N, (U(L)) ¥ Gal(Kab/K)ram

L/K

(ef. §3) Now U(L) is compact and N is continuous. It follows that

L/K
NL/K(U(L)) is compact and therefore closed in U(K). As it is also a
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subgroup of finite index (by (5.7)), it is also open in U(K); i.e. there
L/K(U(L > U"(K). By theorem
(6.2) there exists for every m € N an abelian extension L /K such that
N /K(U L)) = U™(K). It follows from these facts that the projective

m

exists an n (depending on L) such that N

limit on the left of T7.12 is equal to U(K). This proves the first
rart of the theorem and also the second in virtue of (3.h4),

Fix a wniformizing element T of K. Let Lm be the Lubin-Tate extensions
corresponding to this choice of ™ . (Cf. (6.1) and (6.11)).

We write L = U L .
n mm

T.2. Corollary K =L . K
ab ™ nr

Proof. Lw°Knr is an abelian extension and therefore contained in Kab'

We have a commutative diagram with exact rows.

0~ Gal(Kab/K)ram > Gal(Kab/K) > Gal(Knr/K) + 0

d(K . /K
ab
U(K) / oc ]
S(L X _/K)

m nr
~

0 ~» Gal(LW Knr/K)ram > Gal(L".Knr/K) > Gal(Knr/K) + 0

where o is the natural projection, a' is induced by o, and the
homomorphisms ¢(K /K) and ¢(L7r oy
limit of the homomorphlsms ¢(L/K) where L/K runs through the abelian

/K) are obtained by taking the projective

subextensions of K and LW.K respectively.

Now ¢(L K /K) is the proaectlve limit of the isomorphisms

o(L /K) : BN, (0 u(L ) ¥ Gal(L /K) and s N, , (U(L)) = U™(K)

Lm/K L /K
by theorem (6.2) we conclude that ¢(Lﬂ'Knr/K) is an isomorphism. The
homomorphism ¢(Kab/K) is also an isomorphism (Theorem T7.1) and therefore
o' is an isomorphism and thus a too, which concludes$ the proof of the

corollary.

(7.3) The grouo U(K)x £ is the completion Bf K* = U(K) x 2 with respect
to the topology of ovpen subgroups of finite index. (Open in the sense
of the topology on K* induced by the valuation on K). When regarded

as this completion we shall write R* for U(K) x i and K* * B* will be
the natural inclusion.

. . . MY -
One can of course choose many isomorphisms K* = U(K) x 2 =Gal(Kab/K).
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It is the aim of the next few subsections to show that we can choose

this isomorphism in such a way that the kernel of

K* > 2% > Gal(k>P/K) + Gal(L/K)

is precisely NL/K(L*) < K* for every abelian L/K (where the last map

is the natural projection).

(T.4) Preliminary definition.

Let L'/K be a totally ramified abelian extension; T, a uniformizing

K
element of K which is a norm from L'; and Kn/K an unramified (abelian)
extension of K. We define a homomorphism r: K* - Gal(L'oKn/K) as follows.
(We should of course write Ty g OF something similar),
*“n
-1 .

U(K > 1= ! = ', = ', {

(K) € ur r(u):= ¢(u” ') € Gal(L'/K) = Gal(L Kn/Kn) Gal(L Kn/h)ram

T F € Gal(L'.Kn/L‘)

where F is the Frobenius automorphism of Gal(L'.Kn/L') and u+ ¢(u)
is the homomorphism defined in (5.5).
The first step now is to show that this definition does not depend
on the choice of L' in L'.Kn, and to show that for this definition
one does have the kernel property mentioned in T.3. To this end we

need the following lemma, which is also usefull further on

(7.5) Lemma.

Let L/K be an abelian extension. The index of N

equal to the number ¥ Gal(L/K).

Proof. Let KL be the maximal unramified extension of K contained in L.
We have [L : K 1 = #{U(K)/N, , (U(L))) (efo (5.T)). There is an

exact diagram.

L/

0 - U(L) - L* & 7 +‘ 0
l NL/K 1NL/K lx fL/K
v

0 - UK) » K* > 2 > 0
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where f_ , := [K

= 1K, ¢ Klo Hence f(K¥/Np (1%)) = F(U(K)/N, ) (U(L)))oFp e =

= [L:K; J[K K] = R cal(L/k).
ge.€.de

(7.6) Lemma.

Let L" < L'.Kn be any other totally ramified abelian extension such
that L".Kn = L'.Kn (i.e. [L':X] = [L":K]; same situation as in the
definition of r above). Then

r
Ker(K* - Gal(L'.Kn/K) + Gal(L"/K)) = NL"/K(L"*).

Proof. Lemma (7.5) implies that it suffices to show that NL"/K(L"*) < Ker(.o)

For this it suffices to show that N (nm") € Ker(o..) when 7"

"
is a uniformizing element of L" (Begaige NL"/K(U(L")) c Ker(r)
because of (5.7) or because the uniformizing elements of L"

generate L"*), Let L" be the invariant field of r(u)F. Such an u € U(K)

exists because r(U(K)) = Gal(L'°Kn/K)ram° Cf. (5.7). Write m" = xm'

where m' € L' is such that N (') = 7. We have

L'/K K
—1 7" .

= 1 = =

Me = Mo g g (M) = Npo g g (0 DeBpy e (T9)
n‘ " n n’ n’ ' n o
=Nk /K(X—T) Ny ()
““n’"n L"/K
It follows that
(7T.6.1) Nov g /K (x) € U(K)
n’"n

Now r(u)F(m") = w". Therefore using F(m') = 7' and xn' = 1" we have in the

(] = n
group U(Lnr) U(Lnr)

o) (') _ rwWF() _ r(PGET) |
T B = = -

Hence by the definition of the isomorphism ¢ in (5.5) we must have(in

virtue of (7.6.1) and (7.6.2))
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(7.6.3)

Mo ) E R med My e (U(LT))

and hence

1}

r(NL"/K(ﬂ")) I‘(U.TTK) = r(u)F

which is the identity on L". This proves the lemma

{7.7) Corollary.

The definition of r in (7.4) is independant of the choice of L',
More precisely if we had used an L" as in (7.6) instead of L'for the

definition of r; i.e. if we had defined
U(K) 3u > (r(u) = o(u 1)
NL"/K(W") > T

where F' is the Frobenius automorphism of Gal(L"oKn/L"), then we would

have obtained the same homomorphism r.

(7.8) Definition of the reciprocity homomorphism.

Choose a uniformizing element 7 of K. Let L1T be as before (cf.(T.1))

then Kab = Lﬂ'Knr (7.2). Now define

ro: K* > Gal(Kab/K)
U(K) 3 ur r(u) = ¢(u7) € Gal(L, /K) = Gal(K_ /K )

T > F € Gal(Kab/Lﬂ)

(7.9) Remarks.

There are several remarks to be made concerning this definition,

1. As 7 is in N (L;) for all m,cf.(6.12), this definition agrees with

Lm/K
the one given in (T7.4).
5. This definition is independant of the choice of m. (By (7.7) and (7.9)

Remark 1
3. The homomorphism r is determined by its values on the uniformizing

elements of K.
4. The homomorphism r is the restriction to K* of an isomorphism

¥ > Gal(x®P/K). cf. (7.3)




(7.10) Theorem.

Let L/K be an abelian extension, then we have

Ker(K* + Gal(k®®/K) + Gal(L/K) = X

T %
N/

Proof. It suffices to prove that NL/K(L*) is contained in this kernel
(7-5). Let K DPe the maximal unramified extension of K contained
in L; let [Kn : K] = n. Let r be the reciprocity homomorphism
for the base field Kn' Then we claim that the following diagram

is commutative.

N /x
K -3 K*
n
(71.10.1) l r l r

Gal(L/Kn) —_— G(L/K)

To see this, let L'/K be a totally ramified abelian extension such that

L‘.Km = L.Km for some unramified extension Km/K of degree m.We can assume

that Kn < Km. We have the following diagram of field extensions

L
A L'.K
/ |
K
n

Let F € Gal(L!Km/L') be the Frobenius automorphism. Then F* is the

L'.K_=1L.K
m m

K
m

Frobenius automorphism of L!Km/L'.Kn. Let m be a uniformizing element

of K which is in N (L'*). Then (cf. (7.%4))

L'/K
(7.10.2) r (m)= e, r(NKn/K(W)) = f(ﬂn) = F°
It remains to check that

(7.10.3) rn(u) = r(NKn/K(u)) for u € U(K )

~

To this end let u' € U(L'r) = U(Lnr) be a 1ift of u (for the norm map
n.
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n-1

u(L . > U(Knr»- The element u" = u'.Fu',..., F~ 'u' is then a 1lift of

n-1

NKn/K(u) = u.Fu, ..., F 'u. The element

rn(u) € Gal(L'.Km/Km) = Gal(L‘.Kn/Kn) is according to (5.5) and (T.4)

characterized by

r (u)(m )

mod V(Lnr/Knr)

T Fru!

where L is any uniformizing element of L'. Hence

' ' n-1 n - -~
~u'.Fu'....F u_u mod V(L' /K )
2u'...Fnu' Fu" pr nr

rn(u)ﬂL,

™

L' Fu'.F

But r(v) € Gal(L'.Km/Km) for v € U(K) is characterized by

r(v)ﬂL,

™

1

v - -
o mod V(Lnr/Knr)

i

L'

where v' is any 1lift of v. It follows that

(7.10.4) rn(u) = r(N (u)) € Gal(L'.Km/Km) c Gal(L'.Km/KnL

K_/K

Taking account of (7.10.2) we have shown that the diagram

(7.10.5) |,

' '
Gal(L .Km/Kn) > Gal(L .Km/K)

is commutative , which implies the commutativity of (7.10.1). The kernel

of r, in (7.10.1) is equal to NL/K (L*) according to (76 ). It follows
n

that
NL/K(L*) = NKn/K(NL/Kn(_L*)) = NKn/K(KeI' rn) c Ker r.

(ef. (7.10.1)). This proves the theorem.
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(T.11) Corollary.

The norm subgroups of K* (i.e. the subgroumsNi/K(L*) where L/K is
an (abelian) finite extension of K) are precisely the open subgroups of
finite index.

For every open subgroup R of finite index in K there is one abelian
extension L/K such that the kernel of r : K* - Gal(Kab/K) + Gal(L/K) is

precisely R.

Proof. A norm subgroup 1s necessarily open of finite index. The rest

of the corollary follows from (7.10) and the fact that
r : K* » Gal(Kab/K) is the restriction to K* of an isomorphism
n,
X o~
K Gal(Kab/K).

The last part of this section 1s devoted to the explicit determination

of the reciprocity homomorphism r d la Lubin-Tate. The main tool is
(7.12) Lemma ([7 ] Lemma 2)

Let T and T' be two uniformizirg elements of K, and let f(X),g(X)
be polynomials of degree g such that f(X) = g(X) = X% mod 7 and
f(X) = X mod (Xg), g(x) = 7'X mod X°. Let m' = um. Then there exists

-~

a formal series ¥(X) € A(Knr)[[X]] such that

(7.12.1) #7(x)) = F([ul(x)), $(X) = eX mod (x2), for a certain ¢ € U(Enr).

where F is the Frobenius automorphism in Gal(Knr/K) and also its extension

to Knr’ and GF(X)) is the series obtained from H{X) by letting F act

on the coefficients of (X).

Proof. Because F-1 : U(K ) - U(K ) is surjective there is an € € U(K__)

—_— nr nr nr
-1

such that u = F(e)e . Define ﬁ}(x) = gX, then
$700 = 4 (Tul (x)) moa (X°).

Now suppose we have already found 9;(X) such that

(7.12.2) #5(x) = 0 ([ul ,(0) mod (x**1)
we define #r+1(X) = 0}(X) + br+1Xr+1, where br E'A(Khr) is yet to be

determined. Now
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g F - 4F +1 r+2

Tl () =3 () + Flo_ )X moa(x™"%)
(7-12.3) ¥y ([,(0) 2 ([l (0) + b, w0 mea (™)
Let F +1 +2
(7.12.4) TI00 - F ([ul (X)) = —ex mod (X 7°)
Then we must choose br+1 such that F(br+1) =c + br+1ur+1. Writing
br+1 = ar+1€r+1 S must satisfy (use F(e) = eu)
(7.12.5) Rla_ ) - a_ = (en) Tk

toe r+1 r+1

Such an a exists because F-1: A(Knr) > A(Knr)‘is surjective

r+1

(cf. Lemma (5.2)). Let ﬁ(X) = limi&(x). This proves the lemma.

7.13) Corollary ([T ] Lemma 2)

Under the conditions of lemma (T7.12) there exists a ﬁ%X) € A(Knr)[[x]]
such that (7.12.1) holds and moreover

(7.13.1) ﬁ([a]f(x)) = [a]g(#(x)) for all a € A(K)

Proof. We first remark that [n]f(x) = £(X) and [n']g(x) = g(X). cf.(6.7) (1)

Let V(X) be as in (7.12). We consider
(7.13.2) n(x) = P (e (1) = F(rul (£ (0))) = T 1,007 (x0)),

where §r1(X) is defined by §(¢r1(X)) =X = #—1(9(X))- (One uses (6.7) (1)
and (6.7) (ii) to obtain the last equality). The series h(X) has its

coefficients in A(K) because

n" () = (1) D00 = (e (@7 H ) =
= #F (1)) = n(x)

(for the one but last equality substitute (9’1)F(X) for X in (7.12.1).
Further .
h(x) = F(e)ﬂ€_1X ZurX = m'X mod(Xg)
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and
n(x) = 85 ) = eFe )t = e HFx®) = 3¢ moa()

Therefore h(X) is a power series of the type considered in 6.6). And

there exists therefore a unique power series [1]g h(X) such that
3

[1]g,h(x) = X mod (xg) and g([]]g,h(x)) = [1]g,h(h(x))' Now let

(7.13.3) F1(X) = mg,hw(x))

then (7.12.1) also holds for ¢' (because [1]g h(X) has its coefficients
b

in A(K). Consider the series

2(X) = #1(Lal ((#)71(0))

We have

-1
g(2(x)) = s([1],  (F(Lal(¢7([1], (X)) =

i

(1], (b ($al (111, (1)) =

[1]

0}

L nC T (Ll 07N, (D)) =

(1 (Tl (In 1 (70, (000D

(1], 0 (Lal 07 () (11, (1)) =

(1, , (11 07N, (6(0))))

2(g(Xx))
where we have used h(X) = #([ﬂ']f(#_1(x))) twice and [1]é:h(x) - [1]h,g(x)

and [1'] ,([a] (X)) = [n'a] (%) = [a] ([T}HX)). Cf- (6.7)

Thus 2(X) satisfies the conditions which define [a]g(X) so that
(6.6) 2(X) = [a]g(X), which proves the corollary.

(7.14) Definition.

We now define a homomorphism s ° K* - Gal(Lﬁ.Khr/K) as follows
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S,"(‘TT) F € Gal(Lﬁ'Knr/L'rr) (The Frobenius automorphism)

sﬂ(u) = [u"1]f € Gal(LTr.Knr/Knr) for u € U(K)

-1 . . .
where . =
[u ]f is the automorphism of Gal(LTr Knr/Knr) Gal(Ln/K) which
-1 . . . .
t
acts on the >‘m as }\mi—-* [u ]f(}\m). (i.e. substitute )‘m in the series

[0 '1.(0)).

(7.15) Theorem ([6] theorem 3 and its corollary)

The homomorphism S, is independent of m and coincides with the

reciprocity homomorphism r defined in (7.8).

Proof. We first show that Sﬂ_('ﬂ") = s",('n'), for all uniformizing elements
T, ' € K. This suffices to prove the first part of the theorem.

= = ' !
Now on K\ K .L =K., =K .L, both sw('n ) end S'rr'(ﬁ )

induce the Frobenius automorphism. On Lﬂ,, s_,(m') is the identity

‘n—'
Thus it suffices to show that sﬂ(:ﬂ') is the identity on Lﬂ,; i.e. we
have to show that

s (m)(A!) = AL

for all m, where AI;I is a root of g(m)(X)/g(m”)(X) where g(X) is a

monic polynomial of degree q such that g(X) = X% mod 7' and
g(X) = n'X mod(Xz).

Let Y(X) be a power series over A(Knr) such that (7.12.1) and

(7.13.1) hold. Then because ['IT]f(X) = £f(X) and [1'] = g(X) we have because
of (7.13.1) that \,’(Am) is a root of gm(X)/g(m—”(X).

Now sﬂ(n') = sTr(u)s (m) = sw(u). F,where F is the Frobenius automorphism

T
in Gal(LTr‘Knr/LTr) c Gal(Kab/K)' Thus

s (1')(A1) = s (w).FOY ) =

s (W([ul (1)) =

V(lul (s (0)(2,)))
= P (Ll (1 '1,00)))

=a}”(xm) = Al
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The second assertion of the theorem now follows easily because for every
uniformizing element T € K both r(m) and sﬂ(n) are the Frobenius on
K _ and the identity on L_.
nr i
q.e.d.

8. CONCLUDING REMARKS
In this section we add a few extra comments to the foregoinga.

(8.1) "Almost the reciprocity morphism" for arbitrary finite galois
extensions L/K.
Let L/K be any finite galois extension. Then the diagram of 5.1

(or rather, a similar diagram), gives an isomorphism

U(K)/N_, (U(L)) =~ Gal(L/K)ram/<Gal(L/K)ram, Gal(L/K)>

L/K

(8.2) Functoriality of the reciprocity homomorphism

Let L - K* > Gal(Kab/K) be the reciprocity homomorphism for the
base field K. Then if L/K is a finite galois extension of K, the

following diagram is commutative

N
L* LK, K*

(8-2-1) l r l Ty

a b
Gal(Lab/L) -> Gal(Kab.L/L) - Gal(Kab/K)

where a is the natural projection and b is the restricting of

automorphisms of Kab'L to Kab'

In the case of an unramified extension L/K this has already been
proved (commutativity of diagram (7.10.5). It thus suffices to prove
the commutativity of (8.2.1) in the case that L/K is a totally
ramified abelian extension.

We have to show that aery = rKNL/K' I.e. we only have to worry

about abelian extensions of L "arising from some subextension of

u
Kab/K'
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Let M/K be a totally ramified abelian extension and Kn/K an
unramified extension of K. The extension L.M/K is abelian. By enlarging
Kn if necessary we can assume that the meximal unramified subextension
of L.M is contained in K - By means of a similar argument as in §3
we find an abelian extension M'/K such that M' contains L and such

that M'.K.m = L.M.Km for some unramified extension Km which contains

K .
n

M' K = L.M.K
m

M'
/ m
L.¥ —mm—L.M.K

- n

AN
/ N T

M M.K
/ i

Ki.M ' j"Kn Km

K

We can now use M'/L and L.Km/L to define r

and M'/K and Km/K to define r

. %k 1
e Gal(M .Km/L)
: K¥ » Gal(M'.Km/K).

K
! 1 S -~ -~ .' A' z
Let u € U(L) and u' € U(Mnr) a lift of u for Ng, g U(Mnr) »U(Lnr).
nr' "nr
] . . -~ -~ . !
Then u' is also a 1lift of NL/K(u) for Ng, I U(Mnr)+ U(Knr),

nr nr

which proves that rL(u) = rK(NL/K(u)) for u € U(L), in view of the

definition of rL(u). Cf. §5 and (T.k4).

And if 7' is a uniformizing element of M', we have that

rL(I\IM,/L(Tr')) =F € Gal(M'.Km/M') = Gal(M'.L.Km/M') and

re(My () = F € Gal(Km'.M'/M')

g.e.d.

(8.3) Ramification.

Keeping track of ramification in the fundamental exact sequence
and the diagram 5.1.1 one sees that ¢(L/K) and hence also r is

ramification preserving, in the sense that Te K* > Gal(L/K) maps
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i . i i
U (K)into Gal™(L/K), where Gall(L/K) is the i-th ramification subgroup
of Gal(L/K) (upper numbering).

(8.4) The case K

%

In the case K = Qp’ teking ™ = p, £(X) = (x+1)P - 1, one finds f(m)(X)=

m
(1+X)P - 1. The elements of Am then are of the form Ty = 1, where

(4 is a primitive p-th root of unity. In this case one has [u]f(X) =

(1+X)% - 1 for each p-adic integer u. Hence [u]f(cmfj) = Q; - 1 and

the formula (T.1l4) becomes the explicit cyclotomic reciprocity formula

given by Dwork in [ 1] .

[1].

[2].
[3].

(L.

(51.

[é].
(71.

[8].
[9].
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