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'.Tn4'ortunated.l~ or fortunated..l~,denendine: ori one's noint of view) 

t~e ansv~r to all these ons not a.l·.ravs yes; i.e. the re A.re 

arbitrary small oerturbation:s '·P') 

for wh i) - a.re all fa.ls e . 

•"lne reason for this is that an arbitrary small chan,P;e in the 

can res 1_1lt in a very large chanp-e in the feasible region D = 

~ = ixjx E fn; ;:.(x) < J; i = 1, ••• m}, as the followinp; elementary 
l -

exaMnle shows: 

?xa"!lnle. We take n = m = 1. The gra:oh of gi = g looks like 

Then D = {x f ~!g(x) ~ O} = [o,2).g8 , defined by l\(x) = g(x) + E 1s an 

arhi trazy small Perturbation of p_ ( in all reasonable meanings of the 

word), but D = {x ~ ~lg (x) > O} contains an interval [c,~) for sowe c. 
E E -

If one now takes f(x) = x, it is trivial to see that the answers to 

all the questions (i) (iii) is no. This example can be found in Evans 

Iii: rrould f2 l. Results on this facet of the stability problem can be 

found in [2] and also in [3]. 

If this nhenonenon. doesnot occur, i.e. if the feasible region 

D' of 0.fD') is close to D (in the Hausdorff-distance sense e.p.) and 

Dis comnact, the answer to questions (ii) and (iii) is yes, as is 

well-known (cf. §3). In this case therefore one is 1n a fairly p:ood 

nosition if one has calculated the solutions x' of (MP'}, -orovided 

one noes not mind overlooking (nossibly very nice) solutions x of ()..fD), 

that ma.y he :f'a.r e:wa.v from Sol(MP') (This nhenomenon. occurs already 

in linear nropra.l".mlnp nroblenm). 

Because of this, it seemed to us reasonable to separate the 

stability nroblem in two narts: a) When does D denend continuouslv 

on the functions /\1 , ..• ,rr, ? b) when does Sol U~) depend continuously 
m .. 

on ( D, f')? (D, f) is the nropra.mming nroblern with feasible repion D 

Md roal-fu11ction f. In this note we concentrate on b). 



3 

'".'hen, of co·ir'le, one has to define feas le reF;ions D and 

nerturhat ions of thPr:: .,.,i thout us the fu."lctions g.. >:.as l,e,t 
l 

to the rely obvious notions of a differentiable set - rcur;hl v 

s. curvilinear nol:,rhedron- &"ld nerturbations of a differentiable 

In this naner v~ deal so to sneak vith first order phenomena 

onlv. For examnle, if the feasible re~ion looks as in the drawinr 

on the ri.r::1t (fip-.2) anfl Uf(x), the gradient of 

noints in the direction of the arrow, 
. . . , 

then a sl1r-ht nerturbat1on 1n the C -sense 

r~sults in Much the same situation. 

~ut in the case of a solution to a -nropra.mming nroblel'l'., as sho.m 
1 

in fii:Y. ~ there are alwavs C ·-nerturbi:itions such that the nerturbed 
2 . . , •-nroblem has many solutions. In this case C -nerturbat1ons g1 'le muc:n 

th~ same situation. Here we are in a mixed first order-second orjer 

situation~ (because the second order nroperties are only imoortant 

in the tanrent direction in x to ~(x) = o). 

Given a differentiable set, there are two natural notions of 

nerturbation. They are exemnli fied by fig. 4 and fig. 5, where the 

dravn line indicates the boundary of the original set and the 

one the boundary of the perturbed set. 

fig.3 

fip.:. 4 fi P-. 5 

In the ca~e of fir. 4 we sneak of c1-nerturbations and in the case 

of fir,.5 of (C 1-) reneralized nerturbations. The corner creatin~ 

trick of fi~. 5 nermits us to chanpe a situation like the one of fi~. 3 

i:-ito one whi.ch is stable under C 1-nerturbations. 

·,:0 r;ive the set 1l(f> of nrorra:mmirni: nrohleMs with comnact feRf'li'hle 

re~ions the tonology corresnonding to the notion of a C 1-p-eneralized 

b · , '11dt1(h) 'D f} · t oertur P.t1on . .wet "I.J he the subsnace of the problems , , t'1a. 

:iiwe A. solution in ;D. It should now be intuitively cles.r that the 

su:1s1:t of 'nl_5)h) of r.,rop:rru:iming nroblems with nreciselv onf' solution 

cont'"li ?;S a.n onen, '.iense subset of hl_(,i{h). Which imnlies that 
r ,,,_) 

~ol : 'rTIJ' .. · -+ Pow(IR!'l) is continuous on an onen, dense suhset of 



:.he air: of this >1ote to T1rove this. F'or a s lar 

theorel'1 concern -uert urb11.t ions, cf [ 4] • Pnless is stRted 

· . b' (HP) . 1 d . b otherv1se, a nro~r~"11'11np nro ~em , 1s a vavs assume- to e such 

that its feas le repion 1s cormact. All nro~ramminp, problew~ 

consiriered are in fln. If x, y E !Rn,< x;y > denotes the inneruroduct of 
x and y. 

2. DIFJ:'ERENTIABLE SETS 

2 • 1 • De fin it ion • 

A differentiable set D c~n is a set D c: ~n such that there 

exist an onen coverinp; fu.} of D and halfsuaces n!;., differentiallv . l lJ 
im.'bedded in Hi• such that 

D n u. = n H~. 
l ,1 l.1 

( i) 

(ii) for ea.ch i,i' let s(i,i') = {t!H-t fl U. n U.1 # 0}. 
1 l 1 

Then there 1s a bijection er .• ,: s(i,i')-+ s(i',i) such that 
11 

= H. , n u. n u ! for all t E s ( i , i 1 ) 
1(1.. 1 1 1 

11 

2.2. Bemark. 

As the H .. are differentially embedded 1n the U. there exist 
1.1 1 

fu.."'lctions g .. : u. -+ IR such that H .. = {x € U. jg .. < O} 
1,1 l 1,1 1 1,1 

\Ill- .(x) 'f O if ft.. •• (x) = 0 (cf. e.g. [5],j5). Of course 
l,1 lJ 

and the p;i i ,, 

are not uniouely detemined by the H ..• 
1,) 

2.3. Definitions. 

Let x ~ lJ. n D. A constraint H.. is called effective in x 
~ l 

l,)O 

if x E d'H .. ; it is called essential in x if for every open neip:hbourhood 
1,1 O 

x F. l1 c U. we have that 
l 

n H~. n u :# 
• 1.1 

.1 
n 
. :1 • .1 .10 

n 
H •• n U 

l ,l 

In ot11er words: H.. is really necessary to define D in a neip:hbourhood 
11 

a 

of x. 



fir,.6 

H1 is effective in x but not essential. H2 and H3 are essential in x 

If His essential in x, then His also effective. 

~: If H is not effective in x, then there is an O'Den U f'!uch that 

X € UC H, 

2.6. ~forms.ls: Let x € D n u1. and let H .. be essential in x. As 
lJ 

o.e.d. 

H •• is differentially embedded in u. and x E aH •• there is an outward 
1.) l l,1 

"Oointine normal vector in x. Using the :metric of IRn ve define n .. ( x) 
l,l 

a.s the normal vector in x to H .• vith ! ! xi j = 1. If ve use functions 
l,J 

as in Remark (2.2) then n .. (x) = c.Vp, .. (x) for some non-zero constant c. 
lJ lJ 

For ea.ch x f D, let N ( D) be the set of endpoints of the vectors 
X 

n .. (x) (where x EU. and H .• essential in x). If U is any set, we de 
lJ l lJ 

N (D) = U !if (D). 
V xEU X 

2.7. Hausdorff-distance. 

For two sets A, B €~none defines the Hausdorff-distance Hd(A,B) 

as Hd(A,B} = inf{d!A c Sd(B), B c Sd(A)} vhere Sd(A) = {x E IRnl 

inf I lx-yl I < d}. 
yEA -

2.8. Definition. (nerturbation of a differentiable set) 

Let D,!'' be two differentiable sets in IRn and let e: > 0. We say 

that O' is an e:-!{eneralized-perturbation of' D or that D and D' are 

e:-elose to each other if 

(i} Rd(D,D') < e: 

(ii) there is a coverinp: {V.} of D U D' such that 
l 

Hd(NV. (D), l'!V. (D')} < e: for all i 
l l 



IT \ .... e. D and D' are ( loc!'\l 

Pl V"!n hv th"' sa."'.le number of restrictions) 

( not t-close) 

fig.8 

(e:-close nrovided the ''new"comer is gentle enoup:h) 

2.10. Polyhedral cones. 

We recall that a (closed) nolyhedra.L cone in !Rn (with vertex in D) 

1s defined by a system of inequalities C = fx € fRnl < x,a.t> .::_ 0, 

i = 1, ..• ,m} where the a. are a fixed finite set of vectors. The cone 
l 

C is called nointed if x € C and -x € C • x = O. 

2.11. Linear differentiable sets 

:'he di fferentia.ble set D is linear if the embedded half-pla."les 

!-l.. c: U. a.re linearlv embedded. One can then choose affine functions 
11 1 

r,1.(x) = < x, a.>+ b. such that D = {x E ~njr.(x) < 0} . Small chM;r:es 
l l l -

. • • . ( . . ) 1 ,._ . 1n the a. am, the b. p:1ve rise to a snec1al kind of small C -nerturua.t1ons 
l l 

of T). 

2,1?. Perturbations 5iven by fu."lctions. 

Let~ be a differentiable set, p:iven locally in U by the halfnlanes 
i· ""h 1 . (. ) { ,, ! ,1. •. , . en there are C -functions g1. 1 = 1, .•• ;o such that D n 11 = x E ,, 

1,1 

(hv shrink:inr U if necessary and changinp.: the ,1.. this can be arranre 
l 



' I X} i 

such that for ever. i.. t!v~r" 

and ror every i t'i"'re is an i U} such that 

l l •t •)(x)II < 6 l \ ,, I 

then the set J' n 1.1 1s an s-C 1-Perturhation of D n U if o is small 

enoul!11. ~uite often this is the most natural way to construct nerturhR-tions. 

In this section we consider mathematical programminp nroblems 

(1"J,f) where D is a comnact (differentiable) set in IRn and f I'!. function 

on ~n. The material of this section is ouite well-knovn. 

Let 11'\Ybe the set of all Prop:ra.mmini:r nrobleMs ( D, f), D comract, 

n:::!Rn. Two nrop-ra'Tlminr: nrohleITlS (D,f) and (D',f') are e:-close in t"i.e 

c0 sense if Hd(D,D') < e:: and !f(x) - f'(x)I < e:: for all XE D iJ :1'. 

Ta.kinP' as onen nbd's of (D,f) El7t9 the sets of all (D',f') that are 

e::,-close in the c0 -sense for all E > 0, defines a tonology on mi._~ . :'he 

set '1ll9 with this tonolop.:v will be denoted 'll1.9 . 
0 

i. 1. Pronosition. 

7he function Sol : 'm_'.)) 1-+- now(~n), (D,f)t-+ Sol(D,f) (solutions of 
0 

(D,f)) is un~r ser1.i-continuous (Here, Pow(Jt) is the set of subsets of Rn). 

nroof: Let ll be an onen set containinp: Sol(D,f}. Sol(D,f) 1s cornnact., 

so t11ere exists a.n open V such that Sol(D,f) c: V c: V c: t', V 
( ) , ( ) •· f'. (x-) ,: ~ comnact. Let '·1 = sun f x and •J = sun f x. Then,,=. -' 

»:: D )(€ D\ V 

xE Sol(D,f) lll.nd '.1' <'Ii.Because Vis comnact there exists S.."1 t: 1 

such that x f:. V, l!v-xll < e:: • v Ell 
1 

"' 1s 11111 "'o!"l"'.lv cor.tinuons on n1 = { x E IPnl inf ! I x-:v-1 ! < 1}. -:;o tr1<"re 
y€D 



and let {D' ,f') he €-close the 

to ( ~ ~, ~h~ .. 1'"1"'. .. i <1-:! a r-oint~ V t= 
.J t·• I• • '" .. -~ •· -· - •' D' and a point x f Sol(D, such that 

1 ! y-x ! < C' therefo~ f' (v) > \~I + ~( i,1-~ 1 ) for a certain v € D'. 
l. 

'.Jew let y I: D''-U. There is an x E D such that I Ix-vi! < £. Then x ¢ V 
bPcause we- would otherwise have that v € U. Therefore f( x) < "P and 

henc"' f'(v) 

~he nroof above also shows that 

3.2. ~ronosition. 

The function Return : 'rrt:\\ •IR. Return(D ,f) :.: 

is continuous. 

C T' u, 

sup f(:x) 
xED 

And, as there is alw~ys at least one solution of (D,f) (because Dis 

comnact), we also have: 

3.3. Corollary. If (D,f) has exactly one solution, then Sol: !Q9 ➔ 0 ow(~n) 

is continuous in (D,f). 

4. STABILITY (LINEAR CASE) 

As we are interested in first-order phenomena in this note. the 

case of linear nrograrnminp problems should ~ive a ~ood indication 

of what to exnect to !teneral. 

l,.1. ~ ... finition. A. linear 11ro(!ra.mminp; nrohlem (D,f), D c !Rn comnact, 

is called nice if 

l.'i} ( ) . . D, f has nrec1sel:v ot1e solution x 
( i i ) ':'here are nrecisely n restraints p. , ••• ,f'. effective in x; thev 

1 1 ln 

are A.11 essential and \Ip. (x), ••.• 'Qp. (x) are linearly indenendent 
l l ln 

(iii) 'lf(x) = A,?fl,(x)+ ••• +), TTg (x) for certain),, ... ),_, L > 0 
' n ·n n 1 

11.2. nronosition. Let (D,f) be a nice linear orop:ramminp nroblerr.. Then 

there is an r. > Q such that 



(i) tf (D',r') i!'l it V'-nrohlemvli.ich is e penere.lizfl'd e:-c 1-nerturh11.ticn 

of (n,f) th~n (D',f') ~l'ls nrecisely one solution. 

(ii) If {D' ,f') is a. r.n-nroble:M. vhi.ch is e. e:-c1-perturha.tion of (D,f) 

t1i.en (D',f') is nice. 

{'I'hP definition of a (p;eneralized) £-C 1-,,,.rturba.tion of (D,f) 

1~ obvious). 

~= 
( i) For a sufficientl:v small neip.hbourhood U of x, D n U is defined by 

n linear constraints g. (x) < O; r,. (x) < O; ••• ; ft. (x) < '.). If e: 
1 1 - 1 2 - ln -

is small P.nough and (D' ,f') 11. ~neralized e:-C 1-nerturbation of {D,f) 

then a.11 solutions of (D',f') are in U. Sunnose (D' ,f') is ftiven 1n 

lJ hy the linear ftmctions h 1 , ... ,hm; m > n. There is a solution 

of (D',f') in U, say x'. Let h 1 ... hn be the constraints essentil'll 

in x'. 

For every hi there is an i(,i) such that Vhi (i') is within e: of 

Vc-i(.i)(x} (and inversely). Hence we ha.ve that n ~ n and that 

Vf'(x') = );Vh. (x')+ •• ,+ )'Vh. (i') tr e: is small enou;m. (Consider 
11 n 1n 

(ii) and (iii) of definition 4.1 and the fact that Vf'(x') is within 

;r, of \7f(x) #- 0 - therefore Vf'(x') '/. 0 if Sis small enowm). 

Furthemore \Th. (.x'), ••• , 'vh. (x') are linearly independent. 
l 1 1 n ~• vt'(f J 

Tt follows that (D,f) looks as in the 

drawinp on the right (fig.9) in a nbd of 

XI. If a RP.COnd noint x'' was also a 

solution of (D' ,f') then- because x" € U, 

in a neiphbourhood of x·' D would look as in a 

neirhbourhood of x! We would get a situation 

like in fiP,10 which is inpossible. 

Then, x and x'' would bP. in the 

hv"Derrilane (17f'? y = c. It follows from 

the convexity that this h:vnerolane 

'.X. 

wouln hP. a houndinp, hvner-ola.ne of n• which is contradictorv). 

fi p:. ,0. 

7h~ nroo~ of (ii) is similar but easier because there ~re exactlv n 

~unctions ~. 



4.3. Pronosition. 

Let (D, be an L"'-problem. Then for every t > 0 there 1s a 

E-C 1-nerturbation 'D' ,f') off which is nice. 

~- Let D 'he defined by the linear constraints p: 1 (x) i O, ••• ,rz,,/ x < 

As n is compact (we only consider compact problems) there 

a solution i of (D,f) and because (D,f) is linear we can choose 

x such that at least n constraints are essential in x. 
Let ~,(x) < 0, ... ,~.(x) < 0 be the essential constraints in x. 

- n -

Because xis a. solution of (D,f) we have: 'il'f(x) = A1v'F,1(5c)+ ••• + \ 0 t!¾(x), 

A. > o. It follows (Caratheodory's theorem, cf [11, Th.18) that there 
l. -

are V~. (x), .. ,, v'F,. (x) such that 
l l 

1 n 

(4.3.1) 

:row choose n linear functions h 1 .•• hn such that h 1(x) = ... = hn(x) = O 

end Vh.(x) is within o of 9g. (x)J and %.(x); .i = 1, ••• ,n are 
.1 1 1, J 

,1 

linearly independent. Fork E {1,, •• n},{i 1, .•• ,in} let bk be a 

real number; lbkj < o2 such that r'l-c(x) + bk < O. Let D' be the linear 

,set defined by 

Because of {4.3, 1) there is a small vector v, I !vi I < e:: such that {if 

11 is ~mall enouph). 

vr(x) + v = u1'% 1(x) + ... +u'IJ'h (x) ; u! > o 
n n 1. 

Let f'(x) = f(x) + <v,x>. Then (D',f') is an e: -c 1-Perturbation of 

(D,f), i € D', and (D',f') is nice. 

Let JJ be the set of L'P nroblern.s, defined by m restrict ions and let 
rn 

J J) be the set of all nroll;ra.mming problems ( in Rn). A topology on 

J.P. is defined by takinr; as a basis for the neip-'hbourhood of (D,f) 
~ 1 

the set of all e: -C -perturbations of (D,f) for all£ > 0. A toPolop;:v 



takinp as a basis for the ooen nbd's of I'. 
i ,; , 

• Ci . 
t'i-iP ~et of all eeneralued e:- .. -nerturba.t1ons of { D, f) ror all 

r. > a. 7hen w~ h~ve the followin~ corollaries of (4.3 and 4 .2). 

Corollary. 7he of !'lice-£9 nroblel"ls in J.:P is onen 
m 

and dense 

Corollary. There is an onen and dense 

exactlv one solution. 

set in.£9 of nroblems with 

li.6. l'.:orollA.:rv. The set of uoints where 801 : J.9 ,. Pow(ltt) 

continuous contains an open and dense set. 

4.7. ~eMark. ~he ~arne arpu.ments 

the measure of the 

an uninue solution 

as in (4.:::>), (4.3) show also that 

LP-nroblems in /..9 which don't have m 
is zero (natural measure on JJJ ) . 

M 

5, STABILITY (first order theory) 

In this section we consider nropra.mmin~ nroblems (D,f) consistin~ 

of a cornnact differentiable set D c !Rn and C 1-runction f : !Rn -+ IR 1 ; 

such that there is a solution x of (D,f) with x EoD. We toPolo;:ize 

the set of such nroP,ramminf problems by takinp a.s a ha.sis f'or the 

onen neip1'1bourhood of ( D,f) the sets of all p,eneralized r:: -C 1-nerturbations 

of {D, f) for all r:: > 0. let "h7>'~ be the resulting tonological sna.ce 

, 5, 1. Definition. A nrogra.mminp problem (D,f) is nice if 

( i} (D, f) ha.s precisely one solution x 
(ii) There are exactly n effective constraints 1n i; they are 

all essential and the set of their normals in xis linearly 

indenendent. 

(iii) 17f(x) = >. 1v 1+ ... +\vn; ),_ > O, where vi are the normal 

vectors in x. 
5,2. Pronosition. The set of nice nrorra.runin~ nrohlems is dense in 

'lll.9~. 
0 roof. For t'le nroof of this Md also further on we need the existence 

of certain functions. Triere exists a c1-fi.mction qi: IRn .... i,R 

such thatdl ('.)) = 1; 0 < cfi(x) < 1 for a.11 x,;. 0 and ,;(x) = 0 

if ! Ix! I .?: 1 • T'1en ! I 9~(x) I! is bounded; let c 1 be such th Pt 

! l <v ¢{ x ) 11 .::, c 1 for all x E !Rn . 



':'here also a fu"lct ion : fin _.. IR such that '!I ( X) = 1 : .,.. 
J.. 

11 X I < - 1 • < ( X} < , for a,, 
... J. X f' !Rn• x) = 0 . f' lA xl > ,t~ • 

'.i:'~,1c:n also X ! I is hounded. Let be such that l I X < : 1 

for ~11 x E 

Now, let D, f') € 'hl,9~ be a nroirramrn.inp nroblel'l and let x be a solut 

Let f' h>? defined by f'(x) = f(x) - ~¢/(x-x). li'or c small enotii7,h (J,f') 

l!'I A.n s-~ 1-nerturba.tion of' (D,f) and {D,f') has exactly one sclut 

x. L"?t Ube a. neit1hbourhood of x such that D n U is defin.ed by functions 

f", •• • p: (er. 2.2 and 2.12). Ry shrinkinp: (if necessary)the other 
' 'm 

sets of an open covering which serves to define D we can assume that 

there is an onen set V such that x € V and V n U' =~from all U' 

different from H in the onen cover used in the definition of D. 

Because x is a solution of (D, f') ve have that 

By Caratheodorv's theorem it follows that there are indices i 1 ••• in 

such that ~f'(x} = u19g. (x)+ ... ~ V~. (x); u. > 0 
1 1 n 1n 1 -

Let w1 ... ws be a maxim.al linearlv independent subset of 'vf!. (x), •.• V.i:. (x). 
1 1 ln 

( i) v 1 ••• v, v 1 ••• w is linearly indenendent 
s s+ n 

( i.i) w. is within r5 of 'iJF,. (x); .i = s+1, ... ,n 
1 l, 

" (iii) 

(iv) ur' ( x) + V 

Now choose a real number a > 0 such that fx E IRn ! I lx-x ! ! < 2a} c V 

We now define functions h 1 .. ,hn; U -+- fl by means of the formulae 

\b:) = ·1i1(x),< x-x, '''i > +(1-,1;1(x)).r:i.(x). i1,1(x) is the function 
.1 

·!(l(x-x)) where 1/J is the function defined in the heeinnini:,: of the 
A. 

nroof. 



!"or t E: {1, •.• ,m} {i 1 ... in} we define kt(x) = gt(x) 

bt a re~l number such that 1h2 1 < o2 and r,t(x) + bt 

13 

+ bt, where 

< o. 

Finally we define f'' as f"(x) = (f'(x) + < x-x, w >). 1./J 1(x) + (1-1J 1 (x)).r'(x) 

Note that h_1• (x) = p;. ( x) for I l x-xl l > 2a. Using the fact that p:. ( x) 
l, - l 

J 

is continuously differentiable and hence that 

;;. (x) = p;. (x) + <'iJg. (x)' x-x > + o( 1 lx-xl I )J it is not difficult 
l 1 J. 

to prove, that h.(x) is an e:-C 1-i,erturbation l . 
of g. if we choose a 

. J. • 
.) 

and o small enoup;h. Similarly f''(x) is an e:- c1-perturbation off. 

Choos inp; also the b t small enough and de fining D' n U by the 

inequalities h1{x) < O, ••. ,h (x) < O, kt(x) < O; t = {1, ••• ,m},{i 1 ••• i} 
- n _ - n 

and taking D' n (IR~ U) = D n (pf,u) we find a generalized i:;-C 1-perturbation 

(D' ,f") of (D,f) such that x € D' and 

This means that Xis tn.any case a local solution of (D' ,f"), and as 

h,, •• hn are linear in V' we know that f"(x) > :f'(x) if !Ix-xi I < a. 

✓ Furthermore lf"(x) - f'(x)l.::, l!wll·llx-xll· Thus by multinlying w if 

necessar:v by a very small P.Ositive constant we can assume that 

I f"(x) - f' (x) I < ae:. Now define 

f'''(x) = f"(x). ,ri2 (x) - (1 - ip2 (x))8€ where 

1Ji2 (x) = 1./J(;a(x-x)). Then f"'(x) is an e:-C 1-nerturbation off" and 

r'''(x) = f"(x), f"'(x) .::_ f"(x) for all x, and f"'(x) < f"(x) for 

x ¢ V'. It follows that (D' ,f"') has exactly one solution. Ta.king 
- 1 . . 

everythinP' to~ether we have found a generalized ;c-C -perturbation 

(D' ,f''') of D,f) which is nice. 

q.e.d. 

5,3. nroposition. 

Let (D,f) be a nice programming nroblem in 'lll?~. Then there 



. . "', 1s a.11. e: > ') sui:-h tliat eve" p'.enerall zed €-(. -"'lerturhat 
•• {hlO>i , l ls 1n "LJ' 1 and h!'l.s exact_y on"! so ut 

is nice it has exactlv one solut x and 

'1f( x) # 0. Let V 'he a small nei ithbourhood of i such that 

?f(x) :/ 0 for all x EV. For sufficiently small e: all 

£-C 1-nerturhations (D 1 ,f') have all their solutions in V 

and v'f'(x) :/,:) for all x EV nD 1 • (D 1 ,f 1 ) therefore has no 
0 

solutions in the interior of D • This proves the first 

statement. 

Nov let V be a neie-hbourhood of i such that D n V is described 

by n functions r 1 •.. pn Let ~f(x) = A1Vg1(x)+ ... + Anv'gn(x); Xi> n 

Let 6 be a small nositive number such that 

there are A! ... A' such that w = A11v1+ •.• + A'v, A, > 0 
1 n n n 1 

(ii} i-P llw-'ilf(x)!! < o and v 1 ••• vn are such that for all i there is 

a. 5 such that l !vi-v'p:/x) 11 < ri and there is an i 0 such that 

l lvi - vr,i (x)l] > o for all i then there are no µ 1 ••• µn' 
0 

µ. > 0 such that w = µ 1v 1 ••• + µ v. 
1 - n n 

(It is not difficult to see that such a 5 exists). Shrinkinp V , if 

necessary~ we can assume that ! !~v.i(x) - vgi(x) I I< ½ 0 for all i 

d ,,.V C • 1 · an x r: • hoose E 1 such that all solut:i.ons of an E1-c -perturbation 

of (D,f) are necessarily in V. Now let E = min{{o, E 1} and (D',f') 

~ 1 . ( ) be a p;enerallzed E- C -perturbation of D,f . Let x' be a ::;elution 

of (D',f') and v1 ... vm be the normals in x'. Because x' is a solution 

we have that ~~'(x') = u1v1 ... +µ v, U· > 0 
mm 1-

and b:v- Caratheodor:v 's theorem, there a.re v. 1, 
1 5 3 1) "~•(~') - ,,, + + , \ , , ~. X - '"'lV. • .. ]..IV. 

1 1 n 1n 
u: > a. 

l -

• • • V,. 
l n 

such that 

Because of pronert:v (ii) this means that for ea.ch 1. there 1s 
,1 



v. 
1 ~ 

5.3.2) l !v. 
' l. 

1 

:Jow sunnose that there 1s a second solution x" of (D',f'} then 

ve would sbilarly have: 

15 

Vt"'(x") = u"v'. + ... + 1.i''v! and for each i. a 
1 1 i n ln .1 

1. such 

that 

!v• ' i. 
,l 

- ",,.. ( xH l < a 1, 
.1 

' ., 

Because also 11 \If' ( i) - Vf' ( x') I l < r5 and because of 'Ororerty ( i) 

we have that (D',f') must look like the drawing below 

~ut this is not a ~eneralized s-C 1-uerturbation of (D,f). Which 

nroves the nroposition. 

5,4. Corollarv. The set of nrop;ra.mrninr nroblerns (D,f) in fn}.9~ with 

exactly one solution contains an onen dense set 

5. 5. Corollary. Ther"" is an open dense set in trrt? ~ on which the 

function Sol is continuous. 
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