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1. INTRODUCTICHN

Usually a mathematical programming problem (MP) is given in the
form:

max f(x), x € R"

o

subiect to pi(x) 03 i=1,0..,m
whera f, g. are functions R" » R. We shall most of the time assume
kS

that the functions f and g; are C’, i.e. continuously differentiable,
Now, of course, in nractice f and g, are usually only imverfectly
known (due to inaccuracies in the measuring of variocus constraints
involved e.p.). Hence, instead of dealing with the "true” vproblem (M)

one will usually have a slightly verturbed obroblem,

{wmt) max £'(x), x € B
suybject to plix) <23 1= 1,...,m

Thers are now three natural ouestions. Denoting with Sol{™P), resnv.
ol {*') ¢the splutions of (), resn. {MP') we can ask:

-

V1) tvenm ¥ € Sol{¥®) is there alvavs an X' € Sol(M') close to
¥ 18 {™') is close encugh to (M) {lower semicontinuity of the
functlion 3ol @ (MDY 4 Sol{vm)Y),

(il Niven an X' € Jpl{V') for (MP') close enough to (MP) is there an
£f el close to X' (unper semicontinuity of Sol)

J1LY T fl3e10*1) & continuous function of (MP) (continuity of returns).
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Unfortunatedly (or fortunate&lgadenending on one's voint of view)
the answer to all these auestions is not always yes; i.e. there are
nroFramming vroblems (MP) with arbitrary small perturhations (MP')
for whicn the statements (i) - (iii) are all false.

Tne reason for this is that an arbitrary small change in the

7, cen result in a very large change in the feasible region D =

D= Ix|x€ R zi(x) <03is= 1,...m} , as the following elementary
examnle shows:

Fxamnle. We take n = m = 1. The gravoh of g, = g looks like

fig.1.

=

Then D = {x € R|g(x) >0} = [0,2]-g€, defined by gE(x) = g(x) + € is an
arhitrarv small perturbation of g (in all reasonsble meanings of the
word), but D, = {x € R}ge(x) > 0} contains an interval [c,») for some c.
If one now takes f(x) = x, it is trivial to see that the answers to
all the questions (i) - (iii) is no. This example can be found in Evans
% Gould [2]. Results on this facet of the stability problem can be
found in [2] and also in [3].

If this phenomencn doesnot occur, i.e. if the feasible region
D' of (MP') is close to D (in the Hausdorff-distance sense e.g.) and
D is comnact, the answer to questions (ii) and (iii) is yes, as is
well-known (cf. §3). In this case therefore one is in a fairly good
vosition if one has calculated the solutions %X'of (MP'), provided

one does not mind overlooking (possibly very nice) solutions X of (MP),

that may be far awav from Sol{(MP') (This phenomenon occurs already
in linear vnrogramming nroblems).

Because of this, it seemed to us reasonable to separate the
stability oroblem in two parts: a) When does D depend continuouslv
on the functions £1,...,gm? b) when_does S0l (MP) depend continuocusly
on (D,f)? (D, f) is the vrogramming problem with feasible region D

and goal-function f. In this note we concentrate on b).
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Ten, of course, one has to define feasible regions D and
nerturhations of them without using the functions gi. This has let

+0o the entirely ohvious notions of a differentiable set - roughlvy

a3 curvilinear nolvhedron~- and vmerturbations of a differentiable
set . 0f §2.

In this paner we deal so to speak with first order phenomena
only. For examnle, if the feasihle region looks as in the drawinf

on the ripat (fip.2) and 7f(X), the gradient of f at X

laY
noints in the direction of the arrow, x F@):n\
then a slirht nmerturbation in the C1—sense Pkgz
results in much the same situation. '3,_(33:0 a(x):_o
i

Ryt in the case of a solution to a proframming nroblem, as shown
in fif.? there are alwavs 01—nerturbations such that the nerturbed
problem has manv solutions. In this case Cg—nerturbations give much
the same situation. Here we are in a mixed first order-second order
situation, (because the second order properties are only imoortant
in the tanpent direction in X to g(x) = 0).

Given a differentiable set, there are two natural notions of
verturbation. Thev are exemplified by fig. 4 and fig.5, where the
drawn line indicates the boundary of the original set and the

ocne the bhoundary of the vperturbed set.

fig.3

In the case of fig. L we sveak of C1—nertufbations and in the case

of fig.5 of (C1—) Feneralized verturbations. The corner creating

trick of fig. 5 permits us to change a situation like the one of fig. 3
into one which is stable under C1-nerturbations.

We glve the set‘nfp of nroframming nroblems with compact feasibhle
regions the tonology corresvonding to the notion of a C‘—Eeneralized
verturbation. Let WUjP(h) be the subspace of the problems (D,f) that

nave a solution in 3D. Tt should now be intuitively clear that the

Lo} . . . .
suhset of '“vy( ) of nrogramming nroblems with preciselv one soluticn

contains an onen, dense subset of hvy(h). Which implies that

I
- ) ny . .
301+ MP" » Pow(R7) is continuous on an oven, dense suhset of



‘mj’(‘h). Tt is +the aim of this note to prove this. For a sirmilar
theorem concerning Cg-berturbations, cf [L). Unless it is stated
otherwise, a nrograrming oroblem (MP) is always assumed to be such
that its feasihble region is cormact. All programming nroblems
considered are in Pn. If x, v € Bn, < x,vy > denotes the innernroduct of

x and v.
2. DIFFERENTIABLE SETS
2.1. Definition.

A differentiable set D= R" is a set D « R® such that there
exist an open covering {Ui} of D and halfspaces H?j’ differentiallyv
imbedded in Ui’ such that

. — n

(i) DN, g L

(i1) for each i,i' let s(i,i') = felu,, N U, N UL # 0k

Then there is a bijection Ogn s(i,i') = s(i',i) such that
. T. 1., = H, . ! 1,1
He, MU 0T, Fl'oii' NU; NUS for all t € s(i,i")
?2.2. Remark.

As the Hii are differentially embedded in the Ui there exist

functions B;s U; + R such that Hij = {x € Ui‘gij < 0}
and szii(x) #§01if gij(x) =0 (cf. e.g. [5],§5). Of course the Py s

are not uniauely determined by the Hi"

¢

2.3. Definitions.
Let x € Ui n D. A constraint Hii is called effective in x
Yo

if x EaHi:l ; it is called essential in x if for every open neighbourhood
"o

x £ 1l < Ui we have that

n H?i NU# n H?. nu
it i#i, 2

In other words: Hii is really necessary to define D in a neighhourhood
o

of x.



H1 is effective in x but not essentisl. H2 and H3 are essential in x

2.5. Lemma.

If H is essential in x, then H is also effective.
Proof: If H is not effective in x, then there is an open U such that
x €U cH,

a.e.d.
2.6. Normals: Let x € D N Ui and let Hij be essential in x. As

Hii is differentially embedded in Ui and x € aHii there is an outward

pointing normal vector in x. Using the metric of R" we define ni;(x)
as the normal vector in x to Hii with ||x]] = 1. If we use functions
as in Remark (2.2) then ni;(x) = c.Vgij(x) for some non-zero constant c.

For each x € D, let Nx(D) be the set of endpoints of the vectors

nii(x) (where x € Ui and Hii essential in x). If U is any set, we define

«

Np(D) = ng nx(n).

2.7. Hausdorff-distance.

For two sets A, B € R" one defines the Hausdorff-distance Hd4(A,B)
as Hd(A,B) = inf{aa c 5,(B), B 5, (A)} where S () = {x € R"|

inf ||x-v]] < ah
YEA

2.8, Definition. (perturbation of a differentiable set)

Let D,D' be two differentiable sets iann and let ¢ > 0. We say
that D' is an g-generalized-perturbation of D or that D and D' are

g-close to each other if

(1) Ha(D,D') < ¢
(ii) there is a covering {Vi} of DU D' such that

V.

Ha(N_ (D), ﬂv (D')) < g for all i
i i
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We say that D' is an e—C1~nerturbation of D (not generalized) if
evervwhere (locally) there is a 1-1-corresvpondence between the hal®rlanes

definine D and the halfnlanes defining D' {I.e. D and D' are {locallv)

Fiven hy the same number of restrictiong)

(e-close provided the "new'corner is gentle enough)

2.10. Polvhedral cones.

We recall that a (closed) polyhedral cone in R" (with vertex in 0)
is defined by a system of inequalities C = {x € Bnl < x,q;> >0,
i =1,...,m} where the a; ere a fixed finite set of vectors. The cone
C is called vointed if x € C and -x € C = x = 0.

2.11., Linear differentiable sets

The differentiable set D is linear if the embedded halfvplanes

Hii c U, are linearlv emhedded. One can then choose affine functions

Ei(x) = < x, 8> + b, such that D = {xe€ mn]gi(x) < 0} . Small changes

. . . . . 1 .
in the ai and the bi give rise to (a special kind of) small C -nerturbations

of D.

2.12. Perturbations given by functions.

Let D he a differentiable set, piven locallv in U by the halfvlanes

1 . . '
Hii‘ Then there are C -functions gi(l = 1,...,p) such that D n U = {x € ul
pi(x) < 0} and vgi(x) #0if gi(x) = 0. If !lvgi(x)]] > 3 for all x € U

(bv shrinking U if necessary and changing the 7 this can be arranged),
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and n,...h_ are a set of functions such that for everv tthere is a (i)

-

such that !h;fx) - ?:,i)fx}z <A
Y

”Vhi(x} - "Ri(i)(X)H <4

and for everv i there is an i(3) such that

»(x) = h <
R TO AR

. 1 . . .
then the set D' N U 1s an £€-C -perturbation of DN U if & is small

enoush. Nuite often this is the most natural way to construct nerturbations.

3. CONTINUITY PROPERTIES OF MATHEMATICAL PROGRAMMING ™ROBLEMS.

In this section we consider mathematical programming onroblems
(D,f) where D is a compact (differentisble) set in R” and £ a function
on R". The material of this section is auite well-known.

Let hlybe the set of all programming nroblems (D,f), D comract,

N = R*. Tvo nropramming oroblems (D,f) and (D',f') are --close in the
c® sense if Hd(D,D') < ¢ and [£{x) - £'(x)] < ¢ for all xe Dy D',
Taking as oven nbd's of (D,f) e’"ﬁp the sets of all (D',f') that are

g-close in the c®-sense for all ¢ > 0, defines a tovology on qﬂ? . The
sethP with this tovologv will be denoted thg.

3.1. Proposition.
The function Sol : qnsgp+ Pow(R"), (D,f)r 501(D,f) (solutions of

(D,#)) is uvver semi-continuous (Here, Pow(R") is the set of subsetsof =Y.

Proof: Let U/ he an oven set containing Sol(D,f). Sol(D,f) is compact,

so there exists an oven V such that Sol(D,f) c Ve Ve U, ¥

cormact. Let M = sun f(x) and M' = sun f(x). Then M = f(X) if
¥ED x€D\V

% € S0l(D,f) and M' < M. Because V is commact there exists an €4
such that x € ¥, ||v-x]| <e,=wvET

& is uni®ormlv continuous on D, = {x €IPn]inf [1x-vl] < 1}. 30 there

! vED
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exists an £, such that : x, x' € D,, [Tx-x']] < €5 = | r(x)-f{x")] < J{v=rn)
Let € = min{1,5(™-¥"), €,, €,} and let (D',f') be €-~close in the c®-sense

to (D,f}. There is a vroint ¥ £ D' and a point X £ S0l(D,f) such that

[19-2!1 < ¢, therefore £'(§) > W' +'i(M-w') for a certain ¥ € D',

Yow let v € D'\U. There is an x € D such that ||x-y|| <e. Then x ¢ 7
because we would otherwise have that v € U. Therefore f(x) < ™' and

hence f'(v) < ™' + 3(M-M'). This vproves that Sol{D',f') < U,

g.e.d.
The nroof above also shows that
3.2. Proposition.

The function Return :qngl = R, Return(D,f) = sup f(x)
x€D
is continuous.
And, as there is always at least one solution of (D,f) (because D is

compact), we also have:

3.3. Corollary. If (D,f) has exactly one solution, then Sol:’hﬂ? + Pow(R™)

is continuous in (D,f).

4, STABILITY (LINEAR CASE)

As we are interested in first-order phenomena in this note, the
case of linear vprogramming problems should give a good indication

of what to exvect to general.

k.1, Definition. A linear nropramming vroblem (D,f), D < R” compact,

is called nice if

(1) (D,f) has preciselv one solution ¥

(ii) T™ere are nrecisely n restraints SUETERRY effective in X; thev
1 n

are all essential and Vgi (X)yeens Vai (%) are linearly indevendent
. 1 n

(1i1) 7£(x) = A1Vg1(i)+...+ xnwgn(i) for certain Apeeedgs Ay > ¢

L.2. Pronosition. Let (D,f) be a nice linear programming nroblem. Then

there is an ¢ > O such that
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£ (D',f") is a LP-prohlem which is a peneralized E—C1-nerturhaticn
of (N,f) then (D',7') has nrecisely one solution.

{ii) I1f (n',f') is a LP-prohlem which is a 6-01—perturhation of (n,f)
then {D',f') is nice.

{The definition of a (meneralized) E—C1-nprturbation of (D,

is obvious).
“roof:

{i)} For a sufficientlv small neighbourhood U of X, D N U is defined by

n linear constraints f; (x) <03 £ (x) <05 ..o £s (x) <0.1Ifc¢
1 2 n

is small enough and (D',f') a generalized E—CT—nerturbation of {D,f)
then all soluticns of (D',f') are in U. Sunnose (D',f') is given in

U hy the linear functions h1,...,hm; m > n. There is a solution

of (D',f') in U, say X'. Let h +++h_ be the constraints essential

3
in ¥'.
For every ny there is an i(j) such that Vhi(i') is within ¢ of

r. .)(i) {and inverselv). Hence we have thaet p > n and that

I
s
.

g') = ) j7h, (R')+...+ ) 17h, (') if ¢ is small enourh. (Consider
1 n

(ii) and (iii) of definition L.1 and the fact that yf'(X') is within

g of VA(X) # 0 - therefore Vf'(%X') # 0 if £ is small enough).

Furthermore Vhi (X")yenn, Vhy (X') are linearly independent.

1 n W)

Tt follows that (D,f) looks as in the
drawins on the right (fig.9) in a nbd of

X'. If a second voint X" was also a _—
solution of (D',f') then- because X" € U, fie.9

in a neiphbourhood of %' D would look as in a At

like in fir.10 which is impossible.
Then, ¥ and X" would be in the
nveernlane (7f') v = ¢. It follows from
the convexity that this hypervlane fig. 10,
would bhe a bounding hvrerplane of N' which is contradictorv).

The nroof of (ii) is similar but easier bhecause there are exactly n

functions h.
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k.3, Provosition.

Let {D,f) be an LP-problem. Then for every € > 0 there is a

e-—Cl—nerturbation (D',f') of f which is nice.
Proof. Let D he defined by the linear constraints gifx) < 0s5ees ,gm(x} <0

As D is compact (we only consider compact problems) there is
a solution X of (D,f) and because (D,f) is linear we can choose

X such that at least n constraints are essential in X.
Let RI(X) < 0,...,gn(x) < 0 be the essential constraints in X.
Because % is a solution of (D,f) we have : Vf(X) = )\1Vg1(i)+...+ Anvgn(i),
ki > 0. It follows (Caratheodorv's theorem, cf [1], Th.18) that there

are Vgi (X)geuns Vp,i (%) such that
1 n

(L.3.1) 7£(%) = MIVgi1(x)+...+ uanin(x); W, >0

Now choose n linear functions hy. ..hn such that h1('i) =,,.= ‘nn(i) =0

and Vhi(i) is within 61 of Vgi (%), and th(i); j=1,...,n are
) .i

linearly independent. For k € {1,...n}\{i1,... ,in} let bk be a

real number; ]‘okl < §, such that gk(ii) +b, <0. Let D' be the linear

set defined by

hy(x) € 0,.05n (x) <0, g (x) +b <0 fork € {1,...,0)Ni,...1i 1},

] gk k

f’bﬂ(x) f_O,...,gm(x) <o.

Because of (L.3.1) there is a small vector v, ||v|] < € such that (if
5, is small enough).
s = 1! & 1 $) . gt
VE(R) + v = uiTh (&) 44w () 5 ug > 0

Let £'(x) = f(x) + <v,x>. Then (D',f') is an ¢ —¢'-perturbation of
(D,f), X € D', and (D',f') is nice.

Let-fym be the set of LP nroblems, defined by m restrictions and let

»fj) be the set of all nrogramming problems (in R"). A tovology on
.f_Pm is defined by taking as a basis for the neighbourhood of (D,f)
the set of alls:-C1-perturbations of (D,f) for alle > 0. A topology



nn I.‘Pis e fined by taking as a basis for the onen nhd's of (D,f)
. 1 .
the set of all generalized €-C -verturbations of (D,f) for all

£ > 0. Then we have the following corollaries of (L4.3) and (L.2).
L.k, llary. T ni in 4P :
4 Corolla he of uceﬁp problems 1in e[ n 1s oven and dense

k.5, Corollary. There is an onen and dense set inefpof' problems with

exactly one solution.

L .6, Corollarvy. The set of voints where Sol :vfp + Pow(R?) is

continuous contains an open and dense set.

4L.7. Remark. The same arpuments as in (L.2), (L.3) show also that
the measure of the LP-problems in afpm vhich don't have

an unioue solution is zero (natural measure on ofpm).

5. STABILITY (first order theorv)

In this section we consider nrogramming oroblems (D,f) consisting
of a compact differentiable set D < R" and C1—function £ )" *IR1;
such that there is a solution X of (D,f) with X €4aD. We tovologize
the set of such nrogramming problems by taking as a basis for the
oven neighbourhoed of (D,f) the sets of all generalizede —C1—nerturbaticns
of (D,f) for alle > 0. let QQP:) be the resulting tonological space

,5.1. Definition. A vrogramming problem (D,f) is nice if

(i) (D,f) nhas precisely one solution X
(1i) There are exactly n effective constraints in X; thev are
all essential and the set of their normals in X is linearly

indenendent.

111 X) = +o00+ W . T
(iii) 7r(x) v, \,V,> A >0, where v, are the normal
vectors in X.

5.2. Pronosition. The set of nice programming oroblems is dense in
mge.
Proof. For the nroof of this and also further on we need the existence
of certain functions. There exists a C1-f'unction ¢ : R" >R
such thaté (2) = 1; 0 < & x) < 1 for all x # 0 and 4(x) = 0
ir]Ix!] > 1. Then H‘7¢5(X)H is bounded; let ¢

Hoax) 1] < e

1 be such thet

1 for all x e{Rn.
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There also exists a function Y Rn + R such that Y(x) = 1 if
Ml < 1,0 <u(x) <1 for all x £ R, W(x) =0 if [x!! > 2.

Then also | [7u(x)!] is bounded. Let ¢

for all x € R .

be such that ||vu(x)]] <e

2 2

Now, let (D,f) € qqy? be a8 vprogramming nroblem and let X be a solution

Let f' he defined by £'(x) = f(x) - 86(x-X). For & small enough (D,f')
is an £~ -nerturbation of (D,f) and (D,f') has exactly one solution

X. Let U he a neighbourhood of X such that DN U is defined by functions
fy.--0, (ef. 2.2 and 2.12). By shrinking (if necessary)the other

sets of an open covering which serves to define D we can assume that
there is an oven set V such that X € Vand VN U' = ¢ from all U’

di fferent from U in the oven cover used in the definition of D.

Because X is a solution of (D,f') we have that
(R) = X)+... R . >
79 (%) X1Vg1(x)+. + Xngm(x), Xl >0
By Caratheodorv's theorem it follows that there are indices 1....1

1

1{3) = -~ &Y.
such that Vf'(X) u1Vgi1(x)+... uanin(x), u; >0

Let VoW he a maximal linearlv independent subset of Vgi (%),...V2. (%®).

1 n

There exist vectors w__ ....w_,w such that
‘ s+1 n

(i) VieesWos W oeeow is linearly indevendent

(ii) v is within § of ey (X); 3 =s+1,...,n

b
(1i1) M| <
i HR) 4w = e ey in o>

(iv)  of'(R) +w W+ ww, for certain yi >0

Now choose a real number a > 0 such that {x € Rnl [x-x|] <22} <V

and let V' = {x €R"] ||x-%]| < a}

We now define functions h1"'hn; U + R by means of the formulae

hi(X) = ”H(X)-< X=X, v, > +(1-w1(x)).ei (x). w1(x) is the function

]
1 -~ . . . . . .
w(;(x-x)) where 1 is the function defined in the heginning of the

nroof.
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Tor t € {1,...,m} {iT"'in} we define kt(x) = gt(x) *+ b, , where

< o (%) + b, < 0.
b, a real number such that !bgl 62 and gt( ) "

Finally we define f" as f"(x) = (£'(x) + < x-X, w >). W1(X) + (1-91(X))f'(XJ

Note that hi(X) = g7 (x) for ||x-%|| > 2a. Using the fact that gi(x)
’ 3

is continuously differentiable and hence that

gi(x) = gi(i) + <vgi(§), x-X > + o(!,x—il[)) it is not difficult

to prove, that hi(x) is an €—C1—nerturbation of g; if we choose a
3

and 8 small enough. Similarly f"(x) is an €- C1—nerturbation of f.
Choosing also the bt small enough and defining D' N U by the

inequalities h,(x) < 0,...,h (x) <0, kt(x).i'O; t = {Theemni..i)

and taking D' EH\U = (R \U) we find a generalized E—C -perturbation
(D',f") of (D,f) such that X € D' and

g (x) = ‘%yh1(§)+...+ uthn(i); u; > 0 end kt(i) <0

This means thatX i lnany case a local solution of (D',f"), and as

hy...h are linear in V' we know that f"(X) > f'(x) if ||%-%|] < .

‘Furthermore |f"(x) - £'(x)| < ||w||.||x-%||. Thus by multiolying w if
necessarv by a very small positive constant we can assume that

[£"(x) - £'(x)| < ag. Wow define

1 (x) = £"(x). wz(X) - (1 - wg(x))&e where

1 " . . ]
b(55(x-%)). Then £"'(x) is an ¢-C'-perturbation of £" and

, (x)

(%) = (%), "' (x) < f'(x) for all x, and f"'(x) < f"(x) for

x § V'. Tt follows that (D',f"') has exactly one solution. Taking
evervthing together we have found a generalized 3€—C1-perturbatlon_
(D',£"') of D,f) yhich is nice.

q.e.d..

5.3. Proposition.

Let (D,f) be a nice programming nrdblem.irquGS?. Then there
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. . 1 .
is an € > 2 such that everv generalized £-C -nmerturbation of (D,f)

. ¥ .
is 1anpl and has exactly one solution.

"roof. Because (D,f) is nice it has exactly one solution X and

78(%) # 0. Let V he a small neighbourhood of X such that

Tf(x) # 0 for all x € V. For sufficiently small € all
c-C1—Derturbations (D',f') have all their solutions in V
and Vf'(x) # 0 for all x €V ND'. (D',f') therefore has no
solutions in the interior of D°. This proves the first
statement.

Now let V be a neighbourhood of X such that D NV is described
i coof Ver(x) = X)+...+ % : .
by n functions p,...e  Let (%) A1Vg1(x)+ Aann(x) Al >0

Let § be a small positive number such that

(i) for all w, v «+.v_ such that [w-ve(x)|] <6, !]vi—VFi(i)ll <8

1

there are A!...A' such that w = Alv +...+ A'v. , A. > 0
1 n 1 nn

1 1

(ii) i# ||w-7£(%)]] < & and vy...v are such that for all i there is
& j such that !!vi-ng(i)]l < 8 end there is an i_ such that

!]vi - Vgi (%)]] > 8 for all i then there are no Hyeool s
o

. = cest .
ul > 0 such that w u1v1 unvh

(Tt is not difficult to see that such a § exists). Shrinking V , if
necessary, we can assume that [lvgi(x) - vgi(i)]!< % § for all i

and x € V. Choose €, such that all solutions of an 51—01—perturbation
of (D,f) are necessarily in V. Now let g = min{%ﬁ, 51} and (D',f")

be a generalized e- CT—perturhation of (D,f). Let X' be a solution

of (D',f') and v -V, De the normals in X'. Because X' is a solution

1
(%) = -~ .
we have that 7F'(%') v, HpVos Mg >0

and by Caratheodory's theorem, there are Vo oeeevs such that
1 n

301) TEN(RY) = ulv, +ookulve g opl o>
(5.3.1) ve'(&") u1v11+ +unvln,uiiﬂ-

Because of proverty (ii) this means that for each ii there is



15

nrecisely one 5 such that ]?vi - ng ()] <38

3 3

(5.3.2) Hvii - vp,ki(i)H <&

Yow sunnose that there is a second solution X" of (D',f') then

we would similarly have:

(5.3.3) Ue(%") = uyv! +#...+ u'v! and for each i. a 1.
1 n 1n B J

L]
&
o

that
(5.3.L) Hv'i. - Ve, (] <8
N J

Because also ||V£'(%) - Vr'(%')|] < & and because of vroperty (i)
we have that (D',f') must lock like the drawing below

fig. 11

But this is not a generalized e—C1-Derturbation of (D,f). Which

proves the nronosition.

5.4. Corollarv. The set of nrogramming vroblems (D,f) in(nUPE with

exactlvy one solution contains an oven dense set
5.5. Corollary. There is an oven dense set inﬂq9¥? on which the

function 5ol 1is continuous.
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