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1. INTRODUCTION

Let k be a not necessarily perfect base field; k an extension of k

In this note we continue our study of the natural map

¢i: Ko Exti(G, G,) Exti(GK, Ga’K)
where Ga is the additive group over k, G € gk, the category of commutative
algebraic group schemes over k. For definition of the left-k-vector space
structure on Ext (G G ), cf. [5] of Section 2 below.

As vas remarked in [5] it only remained to show that ¢ an
isomurphism for all i in the case G = Ga’ to prove that ¢ is an
isomurphism for all algebraic extensions x/k, with « perfect and all G € Gy -

This is the subject matter of Sections 2-1 below.

In Section 5 we study the cohomological dimension of gk in case
k is not necessarily perfect. Let ggk respectively ggggk be the full
subcategories of gk consisting of the unipotent groups respectively the
groups of multiplicative type. If k is perfect it turns out that

cohdim (G, ) = mex (cohdim Un , cohdim G )

Sy Sy
cf. Section 5 and [6].

If k is not perfect this is no longer necessarily true (cf. S5.11).
This is due to the existence of nonsplitting exact sequences of type
O+M+>L+>U+>0, ME Mult], U € Un, . The best we are able to prove is
that

. . : .
cohdim (G, ) < cohdim Un, + cohdim Mult 1



A diagram is called exact if it is commulative and all its rows
and columns are exact.

Exti(—, -) denotes the i-th Yoneda extension group in the category
Gy - The characteristic p of k is assumed to be positive. We use the
same notations and conventions as in [5]; k denotes the algebraic
closure of k. The results concerning the properties ESC and ESD of
(5] and [5] (311) and (4h7) will be used occasionally without explicit

reference.
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2. Ext, (G, G, ) AND Ext, (W_, G)

Ga denotes the additive group. For each n € N let Wn be the ring
scheme over k of the Witt vectors of length n. There are various natural
group scheme homomurphisms between the Wh, given on points by
(S a k-algebra)

F: wn(s) - wi(s), (xo, cees X ) > (x2 Xgs +evs xn 1)

V: wn(s) > wn(s), (xo, cees n_1) + (0, Xgs een

T: Wn(S) > Wﬁ+1(S), (xo, cees xn_1) + (o, Xgs eevs X

R: (S) +W (s), (xo, cees xn)-> (xo, cees X
W_ denotes the progroup scheme (W . R0, W > W, m< n).

Let £ € Ext, (U G, ) be represented by (*) o +G, >E+>U~0
for each ¢ € k, let ¢c. G, ~ Ga be the natural map "multlpllcatlon with c".
Let c£ be the element represented by the pushout of (*) along ¢, and
let FE be the element represented by the pushout of (*) along F: Ga > Ga‘

This turns Ext;(U, Ga) into a left k[F] module, whee

<o .
k[Fl=1{ ¢ aiFl | a; € k}; multiplication rule:
Fa = aPF

(cf. also [5] and [9], section 7.



2.1. Lemma

Let En be the element of Ext; (Wn, Ga) represented by the exact

sequence
n
R

0o+gc ¥ Wy 3 W0
. 1 . -
(i) Extk (Wn, Ga.) is the free left k[FJ]-module generated by e -
.. 1 1 .

.

(ii) R*: Ext, (Wn, Ga) «)Extk(wnﬂ, Ga) is the zero map.

Proof.

Statement (i) for n = 1 is part (i) of [9] Theorem 7.3. Suppose
that (i) holds for n. The exact sequence En qives an exack neguence
(e} KI[F) medates)

1
Ext, (wn, Ga)

R 1 ™4
> Ext, (W .., G)> Ext (G, G.)

Pulling En back along Wn+1 > Wn yields an exact diagram

0->G »W + W + 0
a n+ n

1
[ 4 +

0-+G -» E + 0
a

> wn+1
and it is obvious that the lower exact sequence splits. This shows

*“ - ¢ ® * (3 E] ? -
that R e = 0, vhich proves (ii) for n, and shows that T" is Lnjective.

There is also an exact diagram

0o-¢ *w. %6 o
a 2 a
KR AN S L

0->Ga-+Wn+2+Wn;T

. n¥* -
which proves that T (-e1r1+1

corresponds to 31 this proves (i) for n + 1.

- x . .
) =e 1? proving that Tn 1s also surjective and

h . . - . -
ence biljective. As en',’1

q.e.d.



2.2. Corollary

1 m 1 .
The natural map K 8 Ext, (Ga’ Ga) Ext (Gar’ Gar) is an
isomorphism for field extensions x/k.

2.3. Corollary
Ext, (W, G,) =0

3. THE PROGROUP SCHEMES W AND W

Let L be the profinite group scheme consisting of the

Ln m = Kbr (W E Wn ); L, o is defined over every field k.
]
Over emz daeb'mazlf; ‘closed  fietd we have an exack stguence

0+ m (W)+H+>W_ +0

(c£. [6P1, [cesl; = (W ) is profinite, the local component of w1(w )
is L - its etale component is a prOJectlve limit of groups
Hom (w , 2/p°2).

Thls sequence is in fact already defined over the prime field and hence
over every field (cf.[71, [k]1).

If k is perfect, W and 11(Hw) are projective., If k is not perfect
this is not the case (cf. [5]).

. Let A be the ring of W.

3.1. Lemma
Ext (W, N) = 0 if N € FUn,  i» elale

Proof.
It suffices to prove this for N a twisted version of (Z /pz)r. Let

(3.1) - o+N+E>R-+0

be an exact sequence. Let B be the ring of E and C the ring of N. We
know, because W is projective over perfect fields, that (3.1) splits after -
a2 finite purely inseparable extension L/k. I.e. there exists a morphism

of rings



c, % 3,
which composed with the morphigm B + C defining N + E yields the identity
on C. The morphism Fo: N> N b is an isomorphism because N is etale
(ce. [1], Chapter IV5 5, (5.3). On hg ring level we have N = ig
spectrum of C ek kP ,and F': N> K P is given by

n) n

n
¢:cekk1°)+c,cs1+cp

it follows, because £/k is purely separable that roén)is defined over

k for n large enough. Which means that
n (PM
Fe: Ext (W, N) > Ext (W, N * )

kills the element represented by (3.1), and because F* is an isomorphism
this implies that (3.1) represents zero.

3.2. Group like Elements and Witt-like. Sequences of Elements of A

Let B be a bialgebra over k. An element x € B is called grouplike
if m(x) = 1 ® x + x 8 1 vherem: B+ B o B is the comultiplication on B.
This is equivalent to saying that the k-algebra homomorphism k[X] + B,
defined by X+> x is a morphism of bialgebras, where k[X] has the coalgebra
structure X+ 1 8 X + X 8 1.

A sequence of elements (xo, veay xn~1), X + B is called n-Witt-like
if the algebra homomorphism k[xo, cens xn-lj + B, X, x; is a morphism
of bialgebras where k[XO, cees Xn_1]

is given the additive Witt coalgebra
structure; i.e. X; > ai(x0 81, ..., X; 81; 18X, ..., 19 X;) vhere

the 0., ..., 0,_1> are the polynomials defining the Witt addition.Note

0’
that 1-Witt-like is the same as grouplike. A sequence (xo, eed)

1s called Wltt—l{kg ifr (xo, Xys oo xn_1) is n-Witt-like for all n.



Lemma.
Let A be the algebra of Wk. For every grouplike element a € A

there exists a Witt like sequence (ao, a e ), a. €A,a=3g

1° 0°

Proof.
Let (ao, cees an_1), & = a ) be n-Witt-like. There is an exact
sequence

0~ Ga > wn+1 > wn >0

The sequence (501, cees an_1) defines a homomorphism f: W - W_. We have

an exact sequence
Ham (W, “ﬁ+1) -+ Ham (W , “h) + Ext (W, Ga)

Because Ext (W, Ga) = 0 there exists a 1ift of £, i.e. an (n + 1)-Witt-like

sequence (ao, vees B 4o an) prolonging (ao, 815 eees ‘n-1)

3.3. The Progroup Scheme E

As above let A be the algebra of ﬁk' Let V be the k-vector space of
(p)

by the change of rings k - k, a > a

grouplike elements of A. Let V be the k-vector space obtained from V

P, The homomorphism A + A, a + aP
maps V into itself and the image W is a sub-k-vector space of V(p).
Choose a basis {wa} of V(P)/W and for each w, let v € V be a lift of W, -
For each vu let (vao, vu1, ...) be a Witt-like sequence prolonging va.

Define A' as

n
] 3 p -
A' = ;1m AlC..., xai, R V4 G xmi Vi ved)
n

wvith the co-algebra structure given by

a + m(a), xai > qi(Xao 01, ..., X .98 1; 18 Xa

i y seey 18 Xai)

(0]

vhere o. is the i-th Witt-addition polynomial. This is well defined because

the (Vao’ T ...) are Witt-like.

1



Let W' be the pro-algebraic group scheme corresponding to A'.

There is an exact sequence
O+>L'+W +W=+0

where L' is a product of copies of L”’m. Hence Ext (W', Ga) = 0 because
Ext (W, G ) = 0 and Ext (L.’Q, G,) = O (use 5] (4.§). This means that also
every group like element of A' can be prolonged as a Witt'like sequence
(cf. proof of lemma 3.2). Now construct A" from A', in the same way as A'
from A. Continuin? in this way we find a unipotent pro algebraic group
scheme W with algebra A such that the map V(E) + V(K), a + o of the

vector spacéﬁﬁrouplike elements of A into itself is surjective.

Remark.

In 3.2 and 3.3 we have permitted ourselves to confuse inductive
limits of finitely generated bialgebras and inductive systems of
finitely generated bialgebras.

This is harmless because the category of commutative unipotent
group schemes gggk is proartinian; its full subcategory of artinian

objects is Una , the category of algebraic commutative group schemes, which
is artinian, so that

Pro (Un, ) ~ Sex (Un,, av)° ~ BUn

(ef. [11, ch. v, 52, [7] 1.k, [9] s3).

3.4. Proposition

W is projective in Pro(Un, )

Proof.

W is an extension of % by a projective limit of copies of L. o
end hence Ext (¥, G,) = 0 because Ext (W, G,) = 0 and Ext (L_ _, 6,) = 0
Further Ext (W, E) = 0 if E € zygk is etale because Ext (W, E) = 0
(3.1) and Ext (Lﬁ’“ » E) = 0, because every exact sequence
0O+E-+E +E" +0, E etale and E" local splits. It remains to show
that Ext (ﬁ, *p ) = 0. The exact sequence 0 + ap > Ga £ G, > 0 gives

an exact sequente



Hom (W, Ga) Ea Hom (W, Ga) + Ext (W, ap) + Ext (W, Ga)

The map Fx is surjective because V(A) + V(A), a + a® is surjective:
and Ext (W, G,) = 0. This shows that Ext (¥, a)) = 0.
3.5. Remark

Let T be the kernel of W - W_. The pro-algebraic group schemes

= . 3 - - .
N and We are then projective in Pro (GE)’ because W, “1(W“)i' ~and

Lm, -, £ OTe projective in Pro (GE)'

i .
4. THE GROUPS Ext, (ca, G,) for i > 2

Becaus; the embedding IiJgi + Lin  is ESC and Lin + G _is ESD
we have Ext, (Ga’ G”;?L ~ Exty (Ga’ G,). Both extension functions
shall be denoted Ext™.

L.1. Lemma

Ext'(W_, G) =0 forall i=1,2,...

Proof.

For i = 1 this is 2.3. For i > 1 we have an exact sequence
i+t i i®
Ext™ (M, G,) > Ext™(W_, G,)—> Ext™(W, G,)

deduced from 0 + I + W + W_ -+ 0. Now Ext® (W, Ga) = 0 because of (3.k4)
and Ext®~'(1, G,) = 0 because Mg is projective in G, aad [5](§.F)q.e.d.

L.2. Proposition

Ext; (G, G) =0 for i=2,3, ...

Proof.

This follows from 4.1 by means of the exact sequence

O*W“-»W,*Ga-vo
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L.3. Corollary

i .
Ext™ (U, U,) =0 of {i> 3, U,» U, € Un

Proof.

It sufficgs to prove this for the four cases

(i) Ext’ (6, G,)

(1) Ext® (G_, N)

(iii) Ext® (W, G )

(iv) Ext® (N, N')
vhere N, N' are finite subgroup schemes of Ga’ Case (i) follows from
4.2; case (iii) follows from [5] (q.;)

Case (ii). There is an exact sequence 0 -+ N - G, > G, >0 (ef. [11,
Ch. IV, 2.1) which gives us an exact sequence
i-1

Ext'™' (G, G,) » Ext® (G,, ¥) > Ext* (G, G,)

a
which proves case (ii) because of 4.2,

Case (iv). We have an exact sequence 0 + N' » Ga + G, >0, yielding an
exact sequence
Bt (W, G,) * Ext" (N, §') > Ext’ (N, G_)

It follows that Ext® (N', N) = 0 for i > 3 because Ext’ (N, G ) = 0 for
i>2 (cf. (51 (y.9D.
We recall that the cohomological dimension of an abelian category C,
d+1
denoted cohdim () is the smallest number of such that Ext, (C1, C2) =0

for all c1, 02 €C.

L.4. Corollary

For all fields k of positive characteristic cohdim (Hgk) = 2.
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4,5, Theorem
The natural map

i i
< 8 Ext (G, G,) » Ext’ (G, G, )

is an isomorphism for all algebraic extensions kx/k such that x is

perfect, G € Qk'

Proof. This follows from [5], (4.}), and L.2. and 2.2. above, cf.
also [5] (5.3).

5. ON THE COHOMOLOGICAL DIMENSION OF gk
FOR NOT NECESSARILY PERFECT BASE FIELDS k

We first recall some usefull facts about Yoneda extensions. The

putting together of two exact sequences

0+ A~ G1 >G> ... Gi +-C>0 and 0+ C ~» Gi+1 * e Gi+j + B=>0

2

to get a longer exact sequence

. 0+ A~ G1 * oiee > Gi -+ Gi+1 T 4 Gi+j - B+0

induces a multiplication (denoted with . )
Ext® (C, A) x Extd(B, C) + Ext**d (B, A)

With respect to this multiplication one has (immediately from the
definitions)
*
g E.n = £.gyn

if g: G » C is & homomorphism, £ € Ext® (C, A), n € Ext? (B, G).



12

5.1. Lemma

i . . .
Extk (G1, G2) is a torsim group for all G, G2 € G, end i > 2.

Proof.

- It suffices to prove this in the nine cases Ex‘l;i (U s U ),
Ext (U, M), Ext’ (U, A), Ext’ (M, U), Ext' (M,, M), et o A),
Ext® (A, U), Ext® (4, M), Ext® (A5 A,), vhere U, U1, U, € Un, ,
M, M, M, € Mult, , A, Ay, A, abelian varieties. Cases 1, 2, 3, 4, 7
follow from the fact that & unipotent group is killed by some power
of p = char (k). Cases 6, 9 follow from the fact that Ext (G, A) 'is
torsionif A is an abelian variety (cf. [7], [8], section T.L). It remains

to deal with case 5 and case 8.

Case 5.

The functor . M+ Hom_ (M Gy ) is an antlequlvalence of Mult,
with the category Mod op = "Gal (E/k)-modules which are flnltely
generated as abelian groups and on which Op= Gal (k/x) acts continuously.
Because Q[DJ /b] is semisimple, bg_é o = Gal (k/k) an open subgroup of

finite index there is for every situation

D

tg
D1 ; D2 + 0
in Mod 0;,, an integer n such that D ®o & D lifts to D . This shows that
the EXtMod(")) (, ) are torsion, i > 1 a.nd hence that the EXtMult (, )
are torsion for i > 1 which ipplies that the Ext (M M2) are

torsion for i > 1 because Mult, < G has ESD (et. [5]).

Case 8.
Let i > 2 and let

O+>M+>G, G, >+ ... +G. »A-+0
1 2 1

represent an element .f of l’:‘.‘:d'.l (A, M). Let G be the kernel of Gi -+ A.
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There is an exact sequence 0 + L' 3 G LB 0, L € Lin, , B an

sbelian variety. The element £ is the product of the elements £, and

£ represented by 0 * M > G, > ... > G, _, >G>0 a.ndO*G-’Gi-*A-*O.
The image of £, in Ext (A, B) is torsion. Therefore there exists an

n € N such that nf, becomes zero in Ext (A, B).

There is therefore an E‘ € Ext (A, L) such that nE, = a 52 We now have
ng = £,.nf, = £, .0.E, = a"E, -£5. But o £, € Ext ™! (L, M) is torsion

because of cases L, 5, whlch proves that nf and hence also £ is torsion.

5.2. Proposition
cohdim (gk) = cohdim (Ligi )

Proof.

Let cohdim (Lin, ) = d. Note that d > 1.
Because L Bi <3 G, is an ESD embed:tmg it suffices to show that

a+1 X e et
Ext. (L, A) =0, Ext, (A, L) = (B, A) where L € L g]
+
A, B abelian varieties (cf [5] 3. 11)) Let £ € Ext 3! (L, A) and
let nf = 0,ve have an exact sequence
da+1 d+1

Ext, (L, nA) + Ext, (L, A) 20, pxt

+
&1 (w, )

:+1 (L, nA) = 0 because

L, nA [ 4 Ligl and L:i.gi <G, is an ESD embedding. This shows that & = O,

~here A is the kernel of A%y A. But Ext

and we have proved that lilx‘l:g"1 (L, A) =0, L € Liz_x, , A an abelian

variety.

To deal with Ex*l;;"'1 (B, A) we need a lemma.



1

5.3. Lemma

Let codim (Lig3 ) = d, then Extg (N, A) = 0 if A is an abelian variety
and

N€FG], orNEUg_]
Proof. Let n € N be such that nN = 0 we have an exact sequence

a xn=0 a a+1
Ext, (N, A) T Ext, (N, A) » Ext, (N, nA)

It follows that Extg (N, A) = 0 because Extl‘:” (N, A)=o0

5.4. Proof that Ext.g"1 (A, B) = 0; A, B abelian varieties

Let £ € lilxt;ri*1 (A, B), n¥ = 0. The exact sequence 0 + nA +A>A->0

gives an exact sequence

a+1
k

d+1
k

a+1

(A, B) = Ext .

Ext.l‘: (A, B) > Ext (A, B) + Ext

(A, B)

Now use 5.3 to conclude that £ = 0.

5.5. Proof that Extﬁﬂ (A, L) = 0; A an abelian variety, L € Lin, .

It suffices to do this in the cases (i)

(1) L€ Fo,;

(ii) L€ Un, ; ‘

(iii) L € Mult, ; asuch Ehat Homk(L,Gm) o Lonsion ?ue (i.z. L a bwisted l‘o‘(us).

Ttor > T > Tfree + 0 where

Ttor is the torsion subgroup of T and '1'/'1‘tor = Tfree 18 torsion rree.)

Cases (i) and (ii). Let n be such that nL = 0. We have an exact sequence

(Every Gal (k/X)-module decomposes as 0 -+

Exti” (a, 1) X230 Exti” (A, L) + mg” (A 1)

proving that Extg"1 (A, L) = 0.
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... a+1 )
Case (iii). Let £ € Ext,” (A, L), L € Mult_a twisted torus, n%= 0.

Because L is a twisted torus we have an exact sequence 0 - nL - L3 1L o.
This gives us an exact sequence
d+1

Ext, (A, nL)+ Ext

a+1
k

d+1

(a, L% Exty

(A, L)

d+1

which proves that.£ = 0 because Ext, (A, nL) = 0 in virtue of case (i)

5.6. Remarks on cohdim (Ligi ) if k is Perfect

o

—— — —

If kx is perfect every object L of Lig! decomposes as a direct
sum: L = ML ] UL with ML € Mult! s UL € Un,, and every morphism
¢ =+ L+ L' decomposes as a direct sum of morphims ¢M ML+ M‘L' ’
¢U: UL + UL' . It follows that

cohdim (Lin, ) = max {cohdim (Un, ), cohdim (Mult, )}

if k is perfect. If k is not perfect this is not necessarily true.
Cf. example (5.11) below.

5.7. Remark on cohdim (Multk)

Using similar arguments as in (5.5), especially case (iii), one
easily shows that cohdim (Mult] ) = cohdim (FMulti ). (Use also that
FMult, < Mult, is an ESD embedding). The category FMult, is equivalent

n I k
to the category F-Mod oy of finite 0} = Gal (k/x)-mudules, where k is

the algebraic dosure of k. The cohomological dimension of this category

is related to the cohomological dimension of the profinite group
Gal (k/x) in the sense of 3at’ois cohomology by means of a spectral
sequence of the "change of rings type", which is obtained as follows.

(ce. [6].
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For a fixed finite 0} = Gal (K/x) module M, let o be the functor
N -+ Hom (M, N), homomorphisms as abelian groups; Hom (M, N) has
a natural?-—module structure and is finite if N is finite. Let B Ybe
the functor L - Lq, L a finite op-module; Lc; its submodule of
r}-invariant elements. The composed functor ROa is precisely the
functor vy: N - Hom, (M, N), where Hom, denotes the q}-homomorphisms.
This decomposition g y gives rise to a spectral sequence (cf. [2],
[6]; some properties must of course be verified).
i+

ali(g), Extg (M, N) = mmd(o&

One deduces from this that cohdim (FMod(?}))= 1+ cd(Q}), where cd(e)

is the cohomological dimension of % in the sense of galpls cohomology.

5.8. Proposition

cohdim (ng] ) < cohdim (U_nk) + cohdim (Mult, ) +1
Proof.
Let d = cohdim (Mult, ), & = cohdim (Un, ). Because Mult, < Lin,
is an ESD embedding and Un, < Lig] is
an ESC embedding and the fact that every L € Lig] admits an exact
séquence 0 + M+ L+ U+ 0, M € Mult, , U < Un,, it suffices to prove
that

d_+d +2
(1) Exty s (M, U) = 0 and
dprdy*2
(i1) Ext, . (U, M) = 0, where U € Un, and ¥ € Mult,
Proof of (i).

We shall show that Extl (M, U) = 0 for all1 i» 1, U € Un, , M € Mult, .
For i = 1 this is clear because every exact sequence 0 + U > L +>M-> 0
splits. We proceed-by induction. Let 0 + U +» L1 > L2 > . Ln >M-+>0
represent an element £ in Ext” (M, U); let L = coker (U + L1) and
let £, and £, be the elements in Ext' (L, U) and Ext™ ' (M, L)
represented by 0 » U + L, +L>0and 0> L~+>L,>... * Ln—*M-’O.

There is an exact sequence 0 + M"—-'—'-]-) L ?; U' =+ 0 and because



17

1 )
Ext (M', U) = 0 there is an 5; € Ext (U', U) such that q*s; =£,.

= = g%¢! = g! n-1 !
We have £ = E..E, = q*E!.E, £l 04k, But guf, € Ext™ (M, U')
is zero by induction hypothesis, hence § = 0.

Proof of (ii).

LetO*M-*LT‘*..."Ld_n'*Ld+2*..."’Ld+d+2+U"0
a +d +2 o m mu

represent £ € Ext = © (U, M). Let L = Ker (Lgy 4p > Ly 43) And

let 51 , &2 be the elements represented by the ~exact sequences

O+M->L1+...->Ldm+1->L+O

0O+L->1L + ... > L

a+2” T hgag e U0
m m u

fe |i 2o ' ' .
There 1¢ an exact sequence 0 + M Ldm+¥ + 0, M' € Multl, U' € ggk

(u', M) such that
* *
£, = QEj. We have £ = £,.E, = q £].5, = £1.9,46,.

da +1
u

Because 1*51 = 0 there is an E; € Ext

But quf, € Ext (U, U') = 03 henee £ = O.

5.9. Corollary

cohdim (gk) < 3 + cohdim (Mult, )
(and cohdim (Mult] ) depends only on the galoisgroup Q),- Gal (k/kx), cf.
SoTo

5.10. An Example

Let kX be a nonperfect field. Then these exists a nonsplitting
exact sequence 0 -+ M " E + a * 0. Cf, e,g, [3]. Exp XVII (6.4);
or let 0 » a_ -+E' + Z2/(p) - 0 be the exact sequence corresponding
to an k[U1/(U - U) » k[X, YI/(XP - X), Y° - aX) » k[2]/(ZF), Um X;
X @,Yr Z, and comultiplications U1 @ U + U 8 13
X+ 18X +X01,Y>108Y+Y®1;Z—+2801+ 18 Z, This sequence
does not split if a ¢ kP. Now take the dual of O + a, > E' > Z{p) + O.

Further we know that (ef. [3] Exp XVII, (6.1))

1

Extk (Ga, M) =0 if M€ Mu:u:i
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The exact sequence 0 + ap -+ Ga +> Ga + 0 gives an exact sequence

1

Ext 2

1
(G, up) > Ext (ays u,) > Ext™ (G, up)
which shows that Ext (Ga, My ) $# 0 if k is not perfect.
The exact seqnence 0o~ up -> Gm xR G + 0 gives an exact sequence

1 2 2 xp=0 2
Ext (Ga, Gm) + Ext® (G, “p) + Ext® (G, G ) T+ Ext (Ga, G,) >

L

Ext3 (

3 xp=0 3
Ga, up) + Ext (Ga, Gm) -+ Ext (Ga, Gm) + Ext (Ga, up)

1 . 2 2
Because Ext (Ga, Gm) = 0 we find Ext (Ga, up) ~ Ext (Ga, Gm). We have

an exact sequence
0+ Ext? (6., G )~ Ext] (G, u)+ExtS (G,G)0
a’ m a’ ¥p a’ m
vhich shows that
Ext> (G ) 40
k asup

if k is not perfect.

5.11. Remark

As we have seen cohdim (_gk) = 2 for all k. Let k be nonperfect
separately closed. Then cohdim (g_ul__j;_k) = 1 80 that Ext (- -)=0
for i > 5. On the other hand Ext (-, =) is not necessar11y zero
(example (5.10)) which would have to be the case if

cohdim (Ligi) = max {cohdim Un, , cohdim Mult,} vere true.
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