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2 

Let k be a not necessarily perfect base field; Kan extension of k 

In this note we continue our study of the natural map 

where G8 is the additive group over k, G € !4c, the category of commutative 

algebraic group schemes over k. For definition of the left-k-vector space 

structure on Extk1 (G, G ), cf. [5) of Section 2 below. a . 
As was remarked in [5] it only remained to show that ~i is an 

isomurphism for all i in the case G = G, to prove that ~i is an a 
isomurphism for all algebrau extensions K/k, with K perfec·t and all G E ~. 

This is the subject matter of Sections 2-4 below. 

In Section 5 we study the cohomologic&l. dimension of !4c in case 

k is not necessarily perfect, Let~ respectively Multk be the full 

subcategories of~ consisting of the unipotent groups respectively the 

groups of multiplicative type. If k is perfect it turns out that 

cohdim (~) = max ( cohdim ~, cohdim ~) 

-
cf. Section 5 and [6]. 

If k is not perfect this is no longer necessarily true (cf. 5.11). 

This is due to the existence of nonsplitting exact sequences of type 

0-+ M-+ L-+ U-+ o, ME Multk, U E Unk. The best we are able to prove is 

that 

cohdim (~) ~ cohdim ~ + cohdim Mul tk + 1 
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A diagram is called exact if it is commul:ative and all its rows 

and columns are exact. 

Ext!(-,-) denotes the i-th Yoneda extension group in the category 

~- The characteristic p of k is assumed to be positive. We use the 

same notations and conventions as in [5]; k denotes the algebraic 

closure of k. The results concerning the properties ESC and ESD of 

[5] and [5] (3 11) and q:.1) will be used occasionally without explicit 

reference. 

G denotes the additive group. For each n EN let W be the ring a n 
scheme over k of the Witt vectors of length n. There are various natural 

group scheme homomorphisms between the W, given on points by 
n 

(Sa k-al.gebra) 

F: wn(S) + wn(s), (x0 , ••• , xn_1) + (~, ••• , ~-1) 

V: wn(s) + Wn(s), (x0 , ••• , xn_,) + (o, x0, ••• , xn_2 ) 

T: Wn(S) + wn+ 1(s), (x0 , ••• , xn_1) + (o, x0 , ••. , xn_ 1) 

R: wn+ 1(s) + wn(s), (x0 , .•• , xn) + (x0, ••• , xn_ 1) 

W denotes the progroup scheme (W; Rn-m: W + W, m < n). 
• 1 n n m 

Lett E Extk(U, G) be represented by(*): O + G + E + U + O a a 
for each c E k, let 4> : G + G be the natural map "multiplication with c". 

c a a 
Let c~ be the element represented by the pushout of ( *) along ♦ c and 

let F~ be the element represented by the pushout of(*) along F: Ga+ G8 • 

This turns Ext~(U, Ga) into a left k[F] module, w~ett 

<• . 
k[F] = { l: a.F1 a. E k}; mult~plication rule: 

l. l. 

(cf. also [5] and [9], section 7. 
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2.1. Lemma 

Let e be the element of Extk1 (W, G) represented by the exact 
n n a 

sequence 

(i) Extk1 (W, G) is the free left k[F]-module generated bye . n a n 
(ii) R*: Ext~ (Wn, Ga) ➔ Ext~ (wn+l' Ga) is the zero map. 

Proof. 

Statement (i) for n • 1 is part (i) of [9] Theorem 7.3. Suppose 

that (i) holds for n. The exact sequence e11 9ives an e?lqc/; ~e'j,-uenc.e 

l Cf k [rJ ,,..,,u/w.fe.s) 
* n* 1 R Ext 1 (Wn+1' Ga) 

T 
Ext 1 (G , G ) Extk (W, G)-+ + n a k k a a 

Pulling en back along Wn+l + Wn yields an exact diagram 

0-+ Ga-+ Wn+l + W0 -+ 0 

l l + + 
0-+G-+ E -+W 1 +0 a n+ 

and it is obvious that the lower exact sequence splits. This shows 

that R*en • O, which proves (ii) for n, and shows that Tn* is i.nje,tive. 

There is also an exact diagram 

n* - n* which proves that .T (-en+ 1) • e 1, proving that T is also surjective and 

hence bijective. As en+l corresponds to e1 this proves (i} for n + 1. 

q.e.d. 



2.2. Corollary 

The natural map I( 8k Extk1 (G , G ) ! Ext 1 (G G ) is an 
a a IC &IC ' aic: 

isomurphism for field extensions ic:/k. 

2.3. Corollary 

L n, 

Ext 1 (W, G) • 0 
k • a 

3. THE PROGROUP SCHEMES W AND W 

Let L. be the profinite group scheme consisting of the ,• n 
: • Ker (W ! Wn); r._. is defined over every field k. 

m Ov~i e1)'(:1; ~eh1Qiudf4 'clc~d. fidJ we ha..-t a11 t.,,ca.c.l: -1~e"'a. 

o + ir 1 (w.) + w + w. + o 
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(cf. [GP], [CGS]; w1(w.) is protinite, the local component of w1(W) 

is L. •, its etale component is a projective limit of groups 
, D 

Hom (W , Z/p Z). 
n 

This sequence is in fact already defined over the prime field and hence 

over every field (c.t.[7], [4]). 
If k is perfect, Wand w1(Wco) are projective. It k is not perfect 

this is not the case (er. Es]). 
, Let A be the ring o-.r W. 

3. 1. Lemma 

Ext (w, N) • o if N € ~ i,_ e~afe 

Proof. 

It suffices to prove this tor Na twisted version of (Z /pZ)r. Let 

be an exact sequence. Let B be the ring of E and C the ring of N. We 

know, because~ is projective over perfect fields, that (3.1) splits after 

a finite purely inseparable extension 1/k. I.e. there exists a morphism 

of rings 
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which composed with the morphism B + C defining N + E yields the identity 

on C. The morphism Fn: N + N(pn) is an isomorphism because N is etale 

(cf. [1], Chapter IV, 5, (5.3). On the ring level we have ipnJ is . 
(pn} { n) 

spectrum of C 8k 1t , and F11: N +NP is given by 

i~ follows, because 1/k is purely separable that ro♦/Jl) is defined over 

k for n large enough. Which means that 

kills the element represented by (3.1), and because F° is an isomorphism 

this implies that (3.1) represents zero. 

3.2. Group like Elements and Witt-like_ Sequences of Elements of A 

Let B be a bialgebra over k. An element x €Bis called grouplike 

if m(x) • 1 8 x + x 8 1 where m: B + B lk Bis the comultiplication on B. 

This is equivalent to saying that the k-algebra homomorphism. k[X] + B, 

defined by XH x is a morphism of bialgebras, where k(X] has the coalgebra 
/ 

structure X 1-+- 1 8 X + X 8 1 • 

A sequence of elements (x0 , ••• , x 1), x. +Bis called n-Witt-like n- l. 
i:f the algebra homomorphism k[X0, ••• , X 1] + B, X.i--+ x. is a morphism 

n- 1 1 

of bialgebras where k[X0, ••• , Xn_1J 
is given the additive Witt coalgebra 

structure; i.e. Xi+ ai(x0 8 1, ••• , Xi 8 1; 1 8 x0 , ••• , 1 8 Xi) vhere 

the a0 , ••• , a0 _ 1, are the polynomials defining the Witt addition.Note 

that 1-Witt-like is the same as grouplike. A sequence (x0, x1, ••• ) 

is called Witt-like i:f {x0, x1, ••• , x0 _ 1) is n-Witt-like for all n. 
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Lemma. 

Let A be the algebra of Wk. For every grouplike element a EA 

there exists a Witt like sequence (a0 , a 1, ... ), ai € A, a= a0 . 

Proof. 

Let (a0 , ... , an_ 1), a= a0 be n-Witt-like. There is an exact 

sequence 

0-+-G +W -+W -+-0 
a n+1 n 

The sequence (a01 , ••• , an_,) defines a homomorphism£: W + Wn. We have 

an exact sequence 

Ham (W, W +i) -+- H8lll (W , W ) -+ Ext (W, G ) n · n a 

Because Ext (W, G) • 0 there exists a liftoff, i.e. an (n + 1)-Witt-like 
a 

sequence (a0 , •.. , an_1, an) prolonging (a0 , a1, ••• , an_1) 

a 
3.3. The Progroup Scheme W 

As above let A be the a1gebra of Wk. Let V be the k-vector space of 

grouplike elements of A. Let V(p) be the k-vector space obtained from V 

by the change of rings k -+ k, a -+ ap. The homomorphism A -+ A, a + aP 

maps V into itself and the image Wis a sub-k-vector space of V(p). 

Choose a basis {w } of V(p) /W and for each w ... let v E V be a lift of w. a .. a a 
For each v let 

a 
Define A' as 

(vaO' va,' ••• ) be a Witt-like sequence prolonging va. 

n 
A 1 • lim A[ ••• , x . , ••• J / ( ••• , xP. - v . , .•. ) 

ai ai cu. 
+ n 

with the co-a1gebra structure given by 

a-+m(a), x-. -+a.(x 0 e 1, ... , x. 9 1; 1 ex 0, ••• , 19 X .) 
ai 1 a ai a cu 

where O'i is the i-th Witt-addition polynomial. This is well defined because 

the (vaO' vai' ••• ) are Witt-like. 
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Let W' be the pro-&l.gebraic group scheme corresponding to A'. 

There is an exact sequence 

o -+- L' -+ w• -+ W -+- O 

where L' is a product of copies of L • Hence Ext (W', G) • 0 because 
•,• a 

Ext (W, G ) = O and Ext (L , G ) • O (use f 5] (~. f)). This means that also 
a •,• a 

every group like element of A' can be prolonged as a Witt'like sequence 

(cf. proof' of lemma 3. 2). Now construct A" from A' , in the same way as A' 

from A. Con~inu.tri? in this way ve find a unipp'tellt pro algebraic group 

scheme W with algebra A such that the map V(X) + V(A), o -+- aP of the 

vector spac~rouplike elements of' A into itself is surjective. 

Remark. 

In 3.2 and 3.3 we have permitted ourselves to confuse inductive 

limits of finitely generated bialgebras and inductive systems of' 

finitely generated bialgebras. 

This is harmless because the category of commutative unipotent 

p:roup schemes~ is proartinian; its f'ul.l subcategory of artinian 

objects is Unk, the category of' algebraic commutative group schemes, which 

is artinian, so that 

0 
Pro (~)~Sex (Unk, Ab) ~ ~ 

(cf. (1), Ch. V, §2, [7] I.4, [9] §3). 

3.4. Proposition 

Wis projective in Pro(~) 

Proof. 
• . n Wis an extension of' ·w by a projective limit of copies of' L . -,-

and hence Ext (W, G) • 0 because Ext (V, G) • 0 and Ext (L , G) • O a a •,• a 
Further Ext (W, E) • 0 if' E E ~ is etale because Ext (V, E) • 0 

(3.1) and Ext (L , E) • O, because every exact sequence -,-
0-+- E.., E'-+- E"-+ 0, E etale and E" local splits. It remains to show 

that Ext (w, ~p ) • o. The exact sequence O-+- ap-+- Ga f Ga-+- 0 gives 

an exact sequente 
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= w • • = 
Hom (W, G ) :..* Hom (W, G ) + Ext ( W, a ) -+ Ext (W, G ) 

a a p a 

The map F* is surjective because V(A) + V(A), a-+ aP is surjecti1re; 

and Ext (W, G) = O. This shows that Ext {W, a ) = O. a p 

3.5. Remark - . Let n be the kernel of W + w •. The pro-algebraic group schemes 
a 

rrk and Wk are then projective in Pro (Gk), because Wk, v1{~.)k: and 

L •• Kare projective in Pro (Gk-). 
, ' 

4. THE GROUPS Extki (G, G) for i > 2 
a a -

Becaus7 the embedding~ + Lil\. is ESC and~-+~ is ESD 

we have Extk1 (G , G ) "' Ext1u (G , G ) • Both extension :functions 
a ai - ~ a a 

shall be denoted Ext • 

4.1. Lemma 

Exti(w, G) • o for all i = 1, 2, ••• 
• a 

Proof'. 

For 1 = 1 this is 2.3, For i > 1 we have an exact sequence 

• i = ) deduced from O + rr + W + W + O. Now Ext (W, G) = 0 because of (3.4 . ., a 
and Ext1 - 1(n, Ga)• O because nK is projective in.~ aacl (5] (~•7Jq.e.d. 

4.2. Proposition 

Proof'. 

Exti (G, G) • O for i • 2, 3, ••• k a a 

This follows from 4.1 by means of the exact sequence 

o+w +WCD+G +o 
00 e. 



4.3. Corollary 

of 

Proof. 

It suffices to prove this for the four cases 

(i) Exti (G, G) 
a a 

(ii) Ext 1 (G , N) 
a 

(iii) Exti (N, G) 
a 

(iv) Exti (N, N') 
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where N, N' are finite subgroup schemes of G. Case (i) follows from 
a 

4.2; case (iii) follows from [5] (~.f} 

Case (ii). There is an exact sequence O-+ N-+ G + G + o (cf [1] 
a a · ' 

Ch. IV, 2.1) which gives us an exact sequence 

which proves case (ii) because of 4.2. 

Case (iv). We have an exact sequence O-+ N'-+ G -+ G ~ O, yielding a.n 
a a 

exact sequence 

N, G ) -+ Exti (N, N') -+ Exti (N, G ) 
a a 

It follows that Exti (N', N) = 0 for i ~ 3 because Exti (N, Ga)= 0 for 

i ?-_ 2 (cf. [5](~-'f)). 
We recall that the cohomological dimension of an abelian category C, 

d+1 
denoted cohdim (t') is the smallest number of such that Extc (c1 , c2 ) = O 

for all c1, c2 Et'. 

4.4. Corollary 

For all fields k of positive characteristic cohdim (~) = 2. 
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4.5. Theorem 

The natural map 

I( 8k Exti {G, G) ~ Exti {G G ) 
k a ic' a,ic 

is an isomorphism for all algebraic extensions ic/k such that ic is 

perf'ect, G € ~· 

Proof. This f'ollows from (5], (~.1), and 4.2. and 2.2. above, cf'. 

also [ 5] (s. 3). 

5. ON THE COHOMOLOGICAL DIMENSION OF~ 
FOR NOT NECESSARILY PERFECT BASE FIELDS k 

We first recall some usef'ul.l facts about Yoneda extensions. The 

putting together of' two exact sequences 

0 -+ A -+ G -+ G -+ ••• -+ G. -+ C -+ 0 , 2 1 and O + C + Gi+1 + ••• Gi+j -+ B + 0 

to get a longer exact sequence 

0 -+ A + G -+ ••• + G. -+ G. 1 + 
1 1 1+ 

... 

induces a multiplication (denoted with • ) 

+ G •• + B + 0 
1+J 

With respect to this multiplication one has (immediately from the 

definitions) 

if' g: G + C is a homomorphism, t € Exti (C, A), n € Extj (B, G). 
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5.1. Lemma 

Ext! (G 1, G2 ) is a torsicn group for all G1, G2 € Gk end i > 2. 

Proof. 

i It suffices ~o prove this.in the nine ~ases Exti (u1,_u2), 

Ext. (U1 , M), ~ 1 (U, A), Ex~1 (M, U}, Ext1 (M1, M2 ), Ext1 (M, A), 

Ext1 (A, U), Ext1 (A, M), Ext1 (A,, A2), where ·u, u,, u2 € ~, 

M, M1, M2 € Multk, A, A1, A2 abelian varieties. Cases 1, 2, 3, 4, 7 
follow from the fact that a unipotent group is killed by some power 

of p • char (k). Cases 6, 9 follow from the fact that Ext (G, A) .is 

torsionif A is an abelian variety {cf. (7], [8], section 7.4). It remains 

to deal with case 5 and case 8. 

Case .2.· 

The f'uncto1. . Mt-+- Hom. (M, G ) is an a.ntiequivalence o-r Multk 
K ~ m • 

with the category Mod~ • Gal (k./k)-modules which are finitely 

generated as abelian groups and on which o;• Gal. (k/k) acts continuously. 

Because Q[ °J' I~] is semi simple, ~ ¢ ? • Gal (k/k) an open subgroup of 

finite index there is for every situation 

D 

+g 

D1 -+ D -+- 0 
f 2 

in Mod &J-, an integer n such that D i D t n2 lifts to n1• This ~hows that 

the Ext~d( ) ( , ) are torsion, i > 1 and hence.that the Ext~tk( , ) 

are torsion°}'for i ~ 1 which i,pplies that the Ext~(M1, M2) are 

torsion for i ~ 1 because Multk c: ~ hu ESD (c:f'. [5]). 

Case.§.. 

Let i > 2 and let 

represent an element _ t o-r Exti {A, M). Let G be the kernel of G. -+- A. 
l. 
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There is an exact sequence O + 1·~ G i B-+ o, L €~,Ban 

abelian variety. The element E; is the product o:r the elements E; 1 and 

E; 2 represented by O + M + a1 + ••• + Gi_1 + G -+ 0 and O + G + Gi + A + O. 

The image of t 2 in Ext (A, B) is torsion. There:tore there exists an 

n EN such that nE;2 becomes zero in Ext (A, B). 
There is therefore an t 2 E Ext (A, L) such that. n~2 = a E;2. We now have 

r: r: ' - ' * i-1 ( L M) . . n, = , 1 .nt2 • t 1.a*t2 • a t 1 .E;2 • But a t 1 € Ext , 1s torsion 

because of cases 4, 5, which proves that n( and hence also E; is torsion. 

5.2. Proposition 

cohdim (~) • cohdim (Li¾:) 

Proof. 

Let cohdim (Lil\:) • d. Note that d ~ 1 • 

Because ~ ~ ~ is an ESD embed cling it s~:rices to shov that 
d+1 d+1 d+1 . 

Extk (L, A) • O, Extk (A, L) • 0, Ext (B, A) where L € ~, 

A, B abelian varieties (cf. [5] (i.11)). Let E; € Extd+ 1 (L, A) and 

let nE; • 01 we have an exact sequence 

,where A is the kernel of A~ A. But Extkd+ 1 ( L, A) • 0 because 
n n 

L, nA C. Lil\ and Lil\ c: ~ is an ESD embedding. This shows that ~ • O, 

and we have proved that Ext~+ 1 ( L, A) • 0, L € Li!i:t, A an a.belian 

variety. 

To deal with Ext:+l (B, A) we need a lemma. 



14 

5.3. Lemma 

d Let codim (~) = d, then Extk {N, A)• o if A is an abelian variety 
and 

N € FGk, or N € ~ 

Proof. Let n € N be such that nN •Owe have an exact sequence 

It f 11 th t Extd ( N, A) d+ 1 ( ) o ows a k = O because Extk N, nA • 0 

5.4. Proof that Ext~+i (A, B) = O; A, B abelian varieties 

d+1 ~ 
L~t ~ € Extk (A, B), n 5 • O. The exact sequence O + 0A +A+ A+ O 

gives an exact sequence 

Now use 5.3 to conclude that~= o. 

d+1 5. 5. Proof that Extk (A, L) • 0; ~ an abelian variety, L € ~. 

It suffices to do this in the cases (i) 

(i) L € FG}{ 

(ii) L € ~; 

(iii) L € Multk; auch /;hid Hol'r\k (L,Gm) .:0 hnsi/,0\ f!tt (i.t. L tl. ~wis.-JcJ t0,ws). 

(Every Gal ( k/ k)-module decomposes as O + Tt + T + Tr + 0 where or ree 
Tt is the torsion subgroup or T and T/Tt • T~ is torsion free.) or or .1.ree 
Cases (i) and (ii). Let n be such that nL • O. We have an exact sequence 

- Extkd+1 (A, L) xn:C, Extd+1 (A, L) + Extd+1 ( A, L) 
k k n 

proving that Ext:+i {A, L) • 0. 
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Case (iii). Let E; E Ext:+1 (A, L), L c Multk a twisted torus, n!,= O. 

Because Lis a twisted torus ve have a.n exact sequence O + L ~ L x~ L + O. 
n 

This gives us an exact sequence 

which proves that,~= 0 because Ext:+1 (A, nL) • O in virtue of case (i) 

5.6. Remarks~ cohdim (~)if~ is Perfect 

If k is perfect every object L of LiPit_ decomposes as a direct 

sum: L = '\ 9 UL vi th I\ € Mu1 tk, u1 E ~, and every morphism 

♦ ':• L + L' decomposes as a direct sum of morphims ♦M I\+ I\, , 
♦U: UL+ U1 ,. It follows that 

c.ohdim ( LiPit_) • max { cohdim (~} , cohdim ( Mul. tk)} 

if k is perfect. If k is not perfect this is not necessarily true. 

Cf. example (5.11) below. 

5.7. Remark on cohdim (Multk} 

Using similar arguments as in (5.5), especially case (iii), one 

easily shows that cohdim (Multk) • cohdim (FMultk). {Use also that 

FMul. tk c Mul tk is an ESD embed ding). The category FMul tk is equivalent 

to the category F-MQ.g. oa, of finite 0/ • Gal (k/k)-mudules, where k is 

the algebraic dosure of k. The cohomological dimension of this category 

is related to the cohomological dimension of the profinite group 

Gal (x/k) in the sense of 1Qfots cohomology by means of a spectral 

sequence of the "change of rings type", which is obtained as follows. 

(Cf. [6]. 
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For a fixed finite "} = Gal ( ic/k) module M, let a be the functor 

N + Hom (M, N), homomorphisms as abelian groups; Hor,i (M, N) has 

a natural o;f-module structure and is f'ini te if' N is f'ini te. Let a be 

the functor L + L"i , L a finite O}'-module; L c-; its submodule of 

OJ--invariant elements. The composed functor ao« is precisely the 

functor y: N + Horn (M, N), where Ho111? denotes the "}-homomorphisms. 

This decomposition l y gives rise to a spectral sequence (cf. [2], 

[6]; some properties must of course be verified). 

i . . +. 
Hi(°J, Ext~ (M, N) => Ext~~d(') (M, N) 

One deduces from this that cohdim (FMod(1))= 1 + cd(,), where cd(C,-) 

is the cohomological. dimension of? in the sense of gal.ois cohomology. 

5.8. Proposition 

cohdim (Li!½t) ~ cohdim (~) + cohdim (Multk) + 1 

Proof. 

Let dm = cohdim (Multk), du • cohdim (~). Because Multk c LiPit 

is an ESD embe~ding and~ c: Li!½t is 

an ESC embedding and the fact that every L € LiPit_ admits an exact 

sequence a+ M + L + U + O, M € MuJ.tk, Uc:~, it suffices to prove 

that d +d +2 
(i) ExtL'II; u (M, U) = 0 and 

~d +2 
(ii) Ext1il!itu (U, M) • O, where U .£~and M € Multk 

Proof of ( i ). 

We shall show that Exti (M, U) • 0 for all i.) 1, U € .Y.!!it, M € Mu.ltk • 

For i • 1 this is clear because every exact sequence O + U + 1 + M + O 

splits. We proceed-by induction. Let O + U + 1 1 + 12 + ••• + 1n + M + O 

represent an element tin Extn (M, U); let 1 • coker {U + L1 ) and 

let t 1 and t 2 be the elements in Ext 1 (L, U) and Extn-i (M, L) 

represented by O + U + L1 + L + O and O + L + L2 + • • • + L ➔ M + 0 • 
• IJ. n 

There is an exact sequence O + M1 ~ 1 + U' + 0 and because 
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Ext 1 (M', U) = 0 there is an i=;; E Ext (U', U) such that q*~ 1 = ~,. 
ii n-1 ( r ) We have I;= i:; 1 .i:; 2 = q'E; 1.i:;2 = i:; 1.q*,2 . But q*~2 € Ext M, U 

1s zero by induction hypothesis, hence~= O. 

Proof of ( ii) . 

Let O -+ M -+ 1 1 -+ ••• -+ Ld +i -+ Ld +2 -+ ••• + Ld +d +2 + U + 0 

<:\n +d +2 m m m u 
represent I; E Ext u (U, M). Let L = Ker (Ld +2 + Ld +3). And 

m m let i:; 1 , i:; 2 be the elements represented by the exact sequences 

0-+M-+L 
1 -+ ••• -+ Ld +l -+ L -+ 0 

m 

0 -+ L -+ L d +2 -+ • • • -+ L d +d +2 + U + 0 
m m u 

There ir an exact sequence O + M' i L ~ U' + O, M' € Multk, 
dm+,1 

Because i*i:; 1 = 0 there is an ; 1 E Ext (U', M) such that 
* ~ ; 1 = q i=; 1. We have I;= ~1 .i:;2 = q i:; 1,t2 • t;.q*t2 • 

d +1 
But q1,i:; 2 E Ext u 

5,9. Corollary 

. . \ ' (u, U') = o; henee E; • o. 

cohdim (~) ~ 3 + cohdim (Multlt) 

(an'd cohdim (Multk) depends only on the g&loisgroup o;• Gal (k/k), cf'". 

5.7. 

5,10. An Example 

Let k be & nonperfect field. Then these exists a nonsplitting 

exact sequence O + µ + E + a + o. Cf, e,g, [3]. Exp XVII (6.4); 
p p 

or let O + a +E' + l/( p) + O be the exact sequence corresponding 
p 

to an k[U]/(U - U) + k[X, Y]/(xP - X), yP ,- aX) + k[Z]/(zP), u .-+ X; 

Xi-+ 0 , Yi-+ Z, and comultiplications U..., 1 8 U + U 8 1; 

X i-+ 1 8 X + X 8 1 , Y..,.. 1 8 Y + Y 9 1 ; Z i-+- Z 8 1 + 1 8 Z. This sequence 

does not split if a i kp. Now take the dual of' 0 -t- a + E' + '4,p) + 0. p 
Further we know that (ct. [ 3] Exp XVII, { 6. 1·) ) 
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The exact sequence O + a + G + G + o gives an exact sequence 
p a a 

which shows that Extk2 (G, µ ) + O if k is not perfect. 
& p 

The exact sequence O + µ + G ~ G + O gives an exact sequence 
p m m 

Ext 1 (G , G ) + Ext2 (Ga, µ ) + Ext2 (G , G ) xp,:o Ext2 (G , G ) + 
am p am am 

Ext 3 ( G , µ ) + Ext 3 ( G , G ) xp,:O Ext 3 ( G , G ) + Ext 4 ( G , ll ) 
a p am am a p 

Because Ext 1 (Ga, Gm) • 0 we find Ext2 (Ga' µP} ~ Ext2 (Ga, Gm). 'We have 
an exact sequence 

which shows that 

if k is not perfect. 

5. 1t • Remark 

As we have seen cohdim (Y'!!it) • 2 for all k. Let k. be nonperf'ect 

separately closed. Then cohdlm (Multk) • 1 so that Ext~(-, -) • 0 

tori!._ 5. On the other hand Ext3 (-,-)is not necessarily zero 

(example (5.10)) which would have to be the case it 

cohdim (Li~) • max {cohdim. ~, cohdim. Multk} were true. 
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