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Dedicated to Professor Helmut Hasse on his 75'* birthday

1. Introduection

L.et K be a mixed characteristic complete discrete valuation field; A, its ring of
integers. Let F be a formal group over A ,; let p be the residue characteristic of A and
let A /A be a I'extension of K, with layers -+ — K — K, -~ ---. In this paper
we continue our investigation of the image of the norm map

F-Norm,,,: F(K,) > F(K)

begun in [3]. The main result is Theorem 3. 1, which is proved in Sections 4—11. The
proof is, except for some technical complications, the same as the proof of Theorem 6. 1
of [3] given in [3]. Cf. also 12. 1 below. '

Most of the notations and conventions of [3] remain in force.
The residue field of K is always supposed to be perfect.

2, T-extensions

A I™-extension of a local field A (associated to the prime ¢) is a galois extension
A, K with galois group isomorphic to Z,, the g-adic numbers. Let p be the residue char-
acteristic of K. We shall only consider [™extensions associated to the prime p. (Other
I'extensions are not very interesting in view of [3], 3. 1.) Let L be the maximal unrami-
fied extension of K contained in K. If L = K _ we again know the image of the norm
map (3], 3. 1). If L = K then K /L is a totally ramified /-extension. Using the proof
of [3], 3.1 (cf. also [3], 6.3, and 3. 4 below) we see that it suffices for our purposes tu
consider only totally ramified /-extensions associated to the prime p, where p is the
residue characteristic of the local field A. All I™-extensions occurring below will be as-
sumed to be of this type.

*) Research for this paper was done in 1969/1970 when the author stayed at the Steklov Institute of Mache-
matics in Moscow and was supported by Z. W. O., the Netherlands Organization for the Advancement of Pure
Research.
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If L/K is a cyclic extension of prime degree p, let m(L/K) be the number gover-
ning the behaviour of Try ., i. e. m(L/K) is such that Try g (n%A ) = a}A, where

r=[p~'((m(L/K) + 1)(p — 1) + t].

(If z € R, [2] denotes the entier of z; (cf. [9], Ch. V, §3).)
Now let K /K be a (totally ramified) I-extension; let K, be the invariant field
of p"Gal(K ,/K). We write m, = m(K,/K,_,). Then the following holds

2. 1. Lemma (Tate [10]). There is a constant m, such that

m,=exg(l +p=+ -+ p" ")+ m
for all sufficiently large n.

Here e) denotes the absolute index of ramification of K, ex = vy (p).

If L/K is a totally ramified extension of degree p, then m(L/K) < (p —1)"'peg
(cf. e. g. [2], (6.2D) and Lemma (6. 3. B)). It follows that

2. 2. Lemma. ey —(p—1)m, = 0.

3. Statement of the theorem. Some remarks as to the proof
The main theorem of this paper is

3. 1. Theorem. Let K be a mized characteristic local field with algebraically closed
residue field; let F be a one parameter formal group over the ring of integers A ; of K of height
hylet -+ —K,—--+—K,— K,— K be a I'-extenston of K. Then there exist constants
¢y, €y SUuch thai

F*n(K) = F-Norm, o (F(K,))> F'(K)
1 h—1

where o, == }.l,__}_z.,_ exn—c¢y, B, = — ek =+ ¢,.
(If h = oo, (h—1)h~" should be interpreted as 1.)

Basically, this theorem is proved by means of the same techniques as used in [3].
There are however some complications.

a) We have no longer a completely regular formula for m,. This causes difficulties
in the calculation of the ¢,,(1) and «, (cf. § 8, §9). The same fact causes difficulties in
the calculation of Try,_, (z*) and thus makes necessary the introduction of some extra
functions g, (t) and 7,,(t), to keep track of what is happening. C{. §6.

b) It is no longer true that either Try, _, or Nﬁ;‘k__ll (in the step from level k to level
k—1) is the most important term in the expansion of F-Norm(z) as

F-Norm(z) = Tr(z) + 3 a,Ni(z) + 5 a, Tr(M)
=1

(cf. [3]). In fact there is for every z € F(K,) a finite number of levels (bounded indepently
of n!) in which terms of the form a,N{, 1 < i < p* ! dominate.

¢) In the case of the cyclotomic Iextension of Q, it so happened that, provided
we started with elements of particularly nice valuations we could always neglect all
except precisely one term of the expansion of F-Norm(z). This is not true in the more
general case and it is this fact that makes the assumption “the residue field is algebra-
ically closed” necessary. This also causes us to consider “‘change points” (cf. §7).
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d) Tt is no longer true as in the cyclotomic case that the set {o,,(t) [t =1,2, ...}
is of the form {s €N |s Z: s;}. In general there will be “holes” in the sequence {,,(1)}.
The difficulties due to these facts can be diminished to some extent by ‘“‘changing the
base field”. That is instead of considering K_ /K we take a (suitable) finite extension
LJK such that L - K_/L is still totally ramified (and a I-extension) and prove the theo-
rema for the [Hextension 1 - K/L.

The most difficult part of the theorem then follows also for A /A according to
(3.5) below. To prove this we need some preliminaries.

Let L/K be a finite extension. We define functions 1, (¢) and yx(s) as follows:
3. 2. Definitions. (i) If L/K is unramified 4,,,(t) = .
(1) I L/K is tamely and totally ramified of prime degree [ <- p we defline
Agg(t) = —1 4 1))
(iii) If L/K is totally and wildly ramified of prime degree p we define
Ayg(@) = [p~ ((m(L]K) + 1) (p —1) + 1)].
(iv) If M —L— K is a tower we define Ay, as Ay == Apyi o Ay

This defines 4, for all L/K because every L/K decomposes as a tower of exten-
sions of the types considered under (i), (i1), (ii1), as K is a mixed characteristic Jocal field
with perfect residue field.

For each integer s = 45, (1) we define the number y; ,(s) as the largest integer ¢
such that 4, (t) =s. (Note that such a t always exists if s = 4;,,(1).)

3.3, Lemma. (i) Try (754 ,) = 75 A with s = A, (2).

(ii) If t = x5, (s), and LK is totally ramified, then v, (Tryy(2)) = s, if v () == 1.

(This also shows that the definition of 1, , does not depend on the decomposition
of LK as a tower.)

3. 4. Lemma. Let L/K be a finite extension and F a one parameter formal group
defined over A . Then there exists a constant t, such that for t = t,

F-Norm, (F'(L)) = F59 (K).

Proof. In case L/K is unramified this follows from the proof of [3], 3. 1. In case
L/K is totally ramified of prime degree we have an expansion of Norm (x) as

(3. 4.1) Norm (z) == Try . (2) + _21 a, VY (@) + _1‘1] ay Try o (M).

Now bhecause m(L/K) < (p — 1) 'peg we have that

'UK(atNi/K(w)) > ]*L/K(”L(x)) i v(z) =2 pegl/(p—1).
Hence we have that Norm(z) == Try g (x) mod 7, %%Y it ) (2) is of the form 21k (5)
for some s 22 Ay ((p -—— 1) peg). This proves the lemma in this case (cf. 3. 3 above and
[3], 3.2). Finally let M/L/K and suppose the lemma holds for M/L and L/K, then it
also holds for M/[K because Ay x = Apgoldyy, Ayx(t) = Ayx() if =1t and
,hffolo Ay (t) = o0,
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We are now in a position to prove

3. 5. Proposition. Let
Ly, +—L,—+—L,—L
| | |
K, —K,—-—K,—K

be a diagram of field extensions such that L /L and K [K are I'-extensions and L/K is
finite. Let F be a one dimensional formal group over Ay of height h and suppose that there
exists a constant ¢’ such that

Normy ,,(F(L,))> FPu(L) where B, = h ; ! ney + c.

Then there exists a constant ¢ such that

NormKn/K(F(Kn))> Ffn(K) where B, = h—}:— ! ney + ¢

Proof. Let t, € N be such that Lemma 3. 4 applies to /K. For r sufficiently large
B, = t, and then

Normy ;z(F(K,))> Normg(Normy . (F(L,))> FuEP gy,

It now suffices to remark that
te
(3.5.1) Ayx(t) = —é}i + e
L

where the e, are bounded independently of z. (This follows directly from the definition
of Ay k(t).) q. e. d.

4. A trace lemma

As in [3] we shall need to know something of Tr, . (z*) for totally ramified exten-
sions of degree p (cf. [3], § 4. D).

4. 1. Proposition. Let L/K be a totally ramified galois extension of degree p; let
m=m(L/K) and r =[p~*((m + 1) (p — 1) + 1)]; let =, be a uniformizing element of
L and let mg = (— 1)P"'Ny g (7). Then we have

Try g (#f) = pa mod=Z ™5

Proof. The element =, € L satisfies an equation of type

(4.1.1) ay + a4 e,y = wy
where the a; are equal to a; = (— 1)0,(zy7y, ..., 7,7), where o, is the i-th elementary
symmetric function in p variables and 7,7, ..., 7,7, are the conjugates of 7.

If §$={r,...,7} is a subset of G(L/K), let 7§ = {v7;, ..., 77}, 7y = I 1,
and |S| = the number of elements of S. With these notations wes

(4. 1. 2) a, = (—1)* = as.

[8]=1

Now if | S| == 0, p, then 7§ =l=vS if 7 % id because G(L/K) is cyeclic of prime order p.
Hence each a, is of the form :

(4. 1. 3) a;=Tryg(b) b€ wyA .

Journal fiir Mathematik. Band 268/269 29
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Therefore vg(a;) = r. Now apply Try to the relation (4. 1. 1) to obtain
(4.1. 4) Try g (%) = pag moday.

This proves the proposition for k = 1. For & > 1 multiply the relation (4.1.1)
above with #{~?, apply Tr, . to the result, use induction, and use
ve(Tryg(@) = k—1+r
ifs=(k—1)p+1.Cf 3.3

5. Some funetions

Let F be a formal group over Ay and K_/K a I'-extension of K. Let
F(Xy, .o Xp) = To(X,) + ZaN{(X) + Zay Tr(H)

(cf. [3], 2. 4). We write Norm,, for the norm map F(K,)-> F(K;). In [3] we used a
number of functions o,, t,, d,; to keep track of what was happening and to calculate
o, We used some auxiliary functions j, and /,. All these functions and some more will
be needed again. All of them will be defined in this section.

We use v = vy for the normalised exponential valuation on K and v, = vg, for
the normalised exponential valuation on K.

5. 1. The function o, (). Let d, = v(a,) = vg(a;), where a, is the coefficient of
N*(X) in the expansion of F(X,, ..., X,). We define for all t€R, t =1,

2 D=1+t
(5. 1. 1) HE P ’ i=1,2,...
O (t) = d,p*t + i1,
(note that the o}, (2) of [3] is equal to a{f,:l () as defined here).

Using the o},_, we define

(5-1. 2) O (8) = ¢=o,1,11;r,12-1:1...,ph“1 {O'ilk—1 @)}

Remark. Let ¢ be an integer. Then the smallest integer ¢, such that
Gj;/’c-—1 (&)= ‘_f)nllg, {Ui/k—l O=s

is necessarily equal to 0, 1 or a power of p. Indeed Norm,,_, induces a homomorphism
(K is the residue field of K)

K* o~ FYKYF"(Ky) > F*(K,_J|F**}(K,_)) = K*.

And if i, > 0 this homomorphism is given by a polynomial @, z* + higher degree terms.
It follows that iy = 1 or a power of p. .

A corollary of this remark is that
(5. 1. 3) Normy,_, (F!(Ky) < F#—19 (K, ), tEN.
We now define o,,(t) for £ < n inductively by |

(5.1. 4) Tum() =1, Oupe(t) = 04y 16 (Ompr1 (2))-
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It follows from (5. 1. 3) that

(5 1. 5) NOI‘m,,,,,(F‘(K”)) = Fd",k(‘)(Kk).
We define
5.1, 6 =1 ons(t) = oduy (0)

) =r if 04 (t) = aﬁ,’,‘_l ) < a{,/,,_l(t), Jj=01,p,..., p".

Using this, we also define

(6.1.7) b () = b (0 (1)), k=1,2,...,n,
(56.1.8) G () = 05 (1) = oy 1 (8) + tuppyq (1),
(Tom(t) =1
Toie(t) = V(@) + P Tppsep1 (2) if typ ) =r=0,
G LM @) = 0ulp) + P Tapn @ tpr () = — L, s (0 2 4,
rply) = e E D@D £ sl i, L) = —1, 0 () 0,
O (t) =1,
(5. 1.10) { 0wz (t) = vi(@p) + P * Quppy1 (t) if g () =120,
L0 (®) = 9(D) + P71 - ppra () H otypya (8) = — 1.

Further we define

(6.1.11) L) =0 if &) =0,
l,(t) = smallest natural number ¢ such that oc,,,,(t) = 0 and ¢,;(t) = — 1,
if x,0(t) < 0
(5.1.12) k,(t) = largest integer i such that ¢,,;(t) = —1,
(5.1.13) j.(t) = number of different indices i such that ¢,,(t) = A — 1.

The last function we define is

(5115  dylt) = Typ(0) + PO (e, —mg) it ol 20 6= (p— e,

6. Some elementary properties of the funetions
cn/lu Pulha Tn/k? ln/h: l:njtn ku’ an/k

Let K /K be a I'extension and let F be a formal group over 4. In this section we
assume that the [-extension K /K is such that

my=0+p+ - +p"ex +my
forall n =1,2,3, ... (cf. Lemma 2. 1). '
6. 1. Lemma. ¢,;(t) = typy,(t) for allt, 1 <k <n. _
Proof. Let s = 0,,,,(t) and s’ = 0,,(t). Suppose that ¢,; . ,(t) =r=0, i.e.

(6.1.1) p*d,+ is = p*d, + p"s  for i=p"t, p™t .., p*?
29*
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Then s’ = p*d,, + p"s and we must show that
6.1.2) pld, +is Zp*d, +pTs’ for i=ptth ptt oL p*!

which fcilllows from (6. 1. 1) because s' > p~*s. Now suppose that ¢,, ,(t) = — 1. This
means that
o = [T T 1);p—1) ts <pfd,+is fori=1,p p% ..., p"?
which is equivalent to
(6.1.3) s> mk“(p;i 1_’? A
And we must show that
(6. 1. 4) s> ’”k(P;._ili_Pkd* ,  i=1,p,p% ..., p"L

It suffices to show that s’ = m,. We have
=P (M + D=+ NZp Hp—Dmy,,
=pp—DU+p+ -+ pex+pHp—1m,
=ptex—plex + p7H(p—1)m,.
And this is greater or equal to m, = (1 + p + - -+ + p*¥ e + m, because
PPzt4p+ P4

and ez = (p — 1) m,. q.e. d.
Note that we have also shown that
(6. 1. 5) upt)=—1 ift=(p— 1)~ pFeg

(this result holds because m, < (p — 1)"'p*ex and is independent of the assumption
on K_/K).

6. 2. Some properties of ¢,;, 0,5, Curs Ta> ®np- Directly from the definition of
4, one sees that

(6.2.1) () S up®) 2t

This is obvious if ¢, (t) 2 0. It 4, (t) = —1, then writing &, for d;p
(m, + 1) (p — 1) we have

k-1 and ¢ for

[cjt}gbi—{—it, i=1,2 ..., p"L

+t'

| >b, + tt’ for a certain i then
+ t"
p

Now suppose that there is a ¢’ >t such that [
[c—}—t c—}—t} c—}—t"
p

and ¢ >t and t” is an integer. Then
¢+ 1
p

—

>[c: t}; let ¢ be such that

, then also [ } >b, + it”

¢+t

and

= b 4+ it"” + 1 because
<b;+ it + 1 while " >¢ which is a contradiction.

b, + it'" are integers, and
As a corollary to Lemma 6. 1 we get

(6. 2. 2) O () = Qup(t) = Top(t)  if 4,,(2) = 0.
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Using this and (6. 2. 1) we see that
(6-2.3)  0up(t) 2 0np(t), Qape(t) Z Qupe(t), T () Z T0e(t) - i ' 28
and this and (6. 2. 1) gives
(6. 2. &) O (1) S 0 (2), Lo (t) S 0 (t) i 2 22
The functions 7, 0,, and g,, do not differ much. Indeed we have
(6.2.5)  Gppt) S T (t) S 0p(t) < 0, (t) + (p— 1) Teg — my.

This is proved by induction on k. The first two inequalities are immediate. As to the
last one if ¢,,,(t) = 0 then g,,(t) = 0,,(t), for £ = m —1. It remains to show that if
Qus+1 (1) = Optr (8) + (p—1)"'exg — my,, and bnppr1 (8) = — 1 then

Oaie(t) < 0, () + (p— 1) g — m,.
We have

Gn/k(t) — [(mk-t—l + 1) (P — 1) + Unlk+1(t) g p_l

7 6n/k+1(t) + p_l(P —1) (Myy)

—1

= p s () + prex —pTleg + P my.

On the other hand

- Onji+1(2) ex m
eun(t) = eg - P* + P lonpqa (1) < exp* + » TP =D __p’o'
24 m, ex p—1
< t _— m

= oelt) + (p — 1) leg — m,.
6. 3. Some properties of j,, k,, I,.
(6.3.1) L) 2 10), k() 2 ko0, 08) Sjalt) i ¢ 2t
Further we have as a consequence of 6.1, (6.2.1), (6. 2. 4):
(6.3.2) Ifl,(t') =1,(t) >0 then for all 0 < k < n we have
p(t) = () and ay () = a(t).

Finally we have
(6.3.3) Tup(t) — T () =" —t i 0 <k=10)=1L)
(6. 3. 4) t =7,,@t)modp* if 0 <k=1L0).
(6.3.5) Ifl,(t) =05 >0, then «,;(t)=i—b for b <i<k,(t) and

ai(t) <i—b for k,(t) <iZn.
(6. 3.6) For s = 1,(t),  0us(t) = Tpy(?)-

The properties (6. 3. 3)—(6. 3. 6) follow directly from the definitions of the various
functions involved.
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7. Change points and nice pairs (F. K K)

Let F be a formal group over A4, and A /K a [Mextension of K. Laet
F(X,, ..., X,)=Tr(X,) + _21 a,NY(X) + fauTr(M)

(cf. [3], 2. 4). We write Norm,, , for the norm map F(K,)- F(K,_,). It may happen
that for certain z € F(K,) there occur several terms of the same (minimal) valuation
in the expansion

Normklk—l (@) = Tryp (2) + ié; a;N ¥jk—1 (x) + 5 aMTrk/k-—l(M)-

The valuations v, (z) of elements z at which this is to be expected will be called ckange poinis.

More precisely, the smallest number ¢ such that o}, () = o}, ,(1),0 < i ] < p*Y,
k=1,2,...,n will be called an (i, j)-level k-change point, and will be denoted c,;(k).
The change point ¢;;(k) is called actual if moreover

Okjk—1 (ci:i(k)) = Uz/k—1 (cij(k)) = Ui/k—1(cij(k))-

7.1. Lemma. c;(k) = d;:? Pt oif 0<i<y,
p—1) m+1H—p'd  p < (p=1 (m +1)—p*d, . -
pi—1 pi—1 <cu®) = pi—1 S 0<
Proof. The first part is obvious. As to the second if t = ¢, (k) then
(7‘ 1. 1) (mlc+1) (5—1)+t:|‘=pk—ldi+it
which means
(mk+1)(p_1)+t=pk—1di+it+£, 0§8<1,
(7.1.2) P \
o= 0m+1)—pd, ___ pe
pr—1 pi—1"
This proves the lemma.
Corollary. If m,=(1+p+ -+ p*Neg + m, then
—_— k —_— —_—
(7. 1. 3) Cm(k) — (eK di)p _ 24 (P 1) (mo + 1) . pe 0 g e < 1.

pi—1 pi—1 pi—1°
Remark. If i =1, then we see from (7. 1. 1) that ¢, (k) =t is an integer; it fol-
lows that ¢ < P ;1 , 8o that

_ ok _ ok
7.4 —1 4 2=D (’;kj11) Py o gy < B (r;,,;i—ii) pha;

7. 2. Definition. A pair (F, K _/K) consisting of a formal group over A and a
(totally ramified) I'-extension will be called nice if the following conditions are satisfied:

(i) m, =m(K,/K, ;) =eg(1 +p+ ---+p"") + m, for some constant m,
foralln=1,2,3, ..., '

) d—d, . o
(ii) the numbers = ij- are integers for all 1 < i < j < p*Y,
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h—1

—d,
—1
(iv) ey is divisible by p —1.

In the following section we shall need a few technical results on the position of
various change points in the case of nice pairs (F, K _/K).

7.8. Lemma. Ifi <j,t= c;(k) then o}, (1) < O (2)-
If i <j,t <ey(k) then oy (t) > ohpy (2).

This is not immediately clear only in the case that : = 0. In this case one uses the

same argument as was used to establish (6. 2. 1); note that c,;(k) is the smallest number ¢
such that o}, () = o}, _, (2).

7.4. Lemma. Let (F, K_/K) be a nice pair and suppose p* >1i >0. Let t be an

integer, t,(t) = r, and suppose that c; ,,(k) does not belong to the interval (t, ¢, ,(k)]. Then
Co,i(k) = co,pr (K)-

Proof. We write j = p”. Because ¢, (t) =r we have, because { < p" = j, that
i1 (t) >0l (t) and hence, by (7. 3), c;;(k) > t; therefore c,;(k) > c,;(k) and hence,

by (7.3), ohp_y(co;(k)) < ohp_s(cos(k)) and as o}y (co;(k)) = 031 (co;(k)) we have
again by (7. 3) that cy;(k) = co; (k).

7.5. Lemma. Let (F, K /K) be a nice pair and let e, — my, = 1, p* > (e, — m,) + 1.
Suppose that 0 <i <j and co (k) =< co;(k) then co(k—1) < co(k—1) +1  (here
= (p—1)""eg)

Proof. We have (using the fact that m, =egz(1 + p + - -+ + p**) 4+ m,) accor-
ding to (7. 1)

c (k) - (ex_—di)pk _ eK_(p_i) (m0+ 1') - PE .
0 T pr—1 pi—1 pi—1°
k) = x—d)pt  ex—(p—1(m+1)  pe

o pi—1 pj—1 pj—1

where 0 <&¢ ¢ <1. Because 0 < (pi—1)~ 1(eK—(p——i) (my + 1) + pe) <p* by
hypothesis, we have that (pi —1)"*(ex — d,) < (pj — 1)~ *(ex — d,). (Both these num-
bers are integers because (F, K /K) is mce) Therefore

II

eo,ilk—1) = ¢ ;(k—1) + < cof(k— 1) + 1

—1 :
because (pt—1)"*(ex — (p—1) (my + 1) >e(pJ—-1 )" t(eg— (p—1) (m0 + 1))

7.6. Lemma. Let (F, K_/K) be a nice pair and suppose that e,— m, =2,
= — (e;—mo)p’ modp’?, fENOC {0}, (e,—mg) <p% k>f+g and y,() =r.
Then c,(k) <t for i >j, where j=p" if r 20, j =0 if r = —1, except possibly in the
case f=0,r=—1,1i=1.
Proof. Because y,;(t) = r we have in any case c,,(k) < t (cf. (7. 3)). Suppose that
r =0, then ¢;;(k) =0 mod p*~?! because (F, K /K) is nice. This makes c;;(k) = ¢ impos-
sible. Now let r = — 1 then we have

(pi— 1) ex— (p —1) Umg + 1) 4+ p) < (e, —mg)p’
if either f >0 or i > 1, which makes ¢, (k) = ¢ impossible (cf. (7. 1. 3)).
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7.7.Lemma. Let (F, K K) be a nice pair, 1EN, o\ () = | and
exp’ = 2(e,— my) = 4. Then

Opell) >ci(8) 41 forall ©=1,2,... p*"

Proof. Let
orls) = (pi— 1) eg — d)p" — (pi— 1) (ex— (p — 1) (mo + 1) — 72y
then
%w+D=4N—4YWr—Mﬁ“—%N—4Y%%—%p—M0m+1»—Pﬁii
with the same ¢ (ef. (7.1.1)). Because ¢, ,,,,(t) =—1 we have that t = ¢y, (s + 1).
It follows that
@) — aae) —1 2 [ e VP =D LI g
—1) |t
2 Ml =0 4 2o —1
s+1 1
gppex__]’p (e, — my)
+ (ex '—.di)PsH _ (P_i).("q_mo) ¢t
p(pi—1) p(pt—1) pi—1
_(ex—d)p* |, (p—1) (e,—my)  p—1
pi—1 + pi—1 pi—1+pz——1 —1
_ s, p—1 _(p—=Y(ea—my)
=Ppeég P (31_'"0) p(pL__,l)
p—,—mg)  (pet+ti—p)(p—1)
=T T i
—1
>plex—L (e, —my) — 2= peg— (e, — me) —2

= pleg—2(e,—mg) 2 0.
7.8. Corollary. Let (F, K /K) be a nice pair, t€N, ¢ 4,.,()=—1, and
exp’ =2 (e;— my) = 4. Then
a1 (Our1s®) > 00,1 (0001())  forall i=1,2,....

This follows directly from Lemma 7. 7 above, and the definition of the ¢, because
t'—1

if ¢t is an integer then ol ,(t +¢) < 0%, (0) +1 + :

8. The main proposition

The proposition below is our main tool in the proof of Theorem 3. 1. The proof is
rather lengthy and involved but not difficult.

8. 1. Proposition. Let (F, K /K) be a nice pair such that e,— my = p, eg = (e,— my).
Let t be an integer of the form y,,(t'), b €N, b < n such that '

(8. 1. 1) 1,(t) = b,
(8.1.2) L2 PP e, — my) + P (e, — my + 2)
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where 1, is the smallest natural number such that p™ = (e, — my), and
(8.1.3) P’ = ple,—my) (p* + 3),
(8.1. 4) i = 2 (e, — mg + 1).
Then we have |
(i) 00(t) = Tu0(t), F-Norm,, maps F'(K,) into F"*°(K).
(ii) F-Normy, maps FO Ky into F™®(K,) for all b < i< n.
(ii) F-Norm,, maps F™(K) into F™ Y (K) for all 1 < i< n.

(iv) The induced map F'(K,)— F9(K)F 0Ot (K) s surjective if the residue
field of K s algebraically closed.

Proof. To prove (i) we must show that 2 g (%uue(2) = 0.0(t) (because
tp(t) = — 1 if k < 1,(2); cf. the definitions of 7,; and ,,). Now
Tajye () = Tap(t) 2 ¢
and by (6. 3. 4), 7,,(t) = ¢t mod p®. Because ¢ is of the form y,4(s) it follows that z,, (t)
is also in the image of x,,. And we have therefore

(8.1.5) Aojo (F') = oo (Tn/b @) if 7,,(0)— <t < T (0).

NOW 0,,(2) < 7, (t) < 0, (2) + (6;—mg) by (6.2.5) and (e;— m,y) < p® by condi-
tion (8. 1. 3). This proves the first part of (i), the second part follows immediately (ef.
(5.1.5)).

To prove (ii) we use induction on i. Let k = k,(¢t) = largest integer for which
tnp(t) = — 1. Let t < k. Then we have

(8.4.6)  v,(Tryp(x)) = 7, (8) +1 i v(x) =7 (1) + (pr—1) (61‘—"7'05 +1.
This will be proved in (8. 4) below. This proves (ii) for i < k because 7, () + 1 = d,;(t),
and d,; (1) = p*~%(e; — mg) + 7,;(t) (005 (2) = i — b because 1,(t) = b and ¢, (t) = — 1).

Now let i =k + 1 = k,(t) + 1. Let ¢’ be the smallest actual level i-change point
(cf. 7) such that ¢’ = 7,,;(t). There are three possibilities

1)t —7,,(t) > (e, — mo)Pa"ﬁm-

2) 1 — T,s(t) = (e, — mo) p™K®.

3) ' — Tyslt) < (e — mo) ™.
In the first case as 0,,(t) = 7,:(t) we have 1;;(d,;(t)) = 4,(7,;(#)) =r = 0 and hence
by the definition of d,; and 7, '

0'?/2»1 (dn[i(t)) = P‘ﬁldpr + Pr("'»li(t) + Pa"ﬁ“)(el - mo))

= Ty () + P (e, —my) = iy ()
which implies
Norm,,; , (Fd Wi g N< Fri-Og

which proves the induction step in this case.
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In case2) we have that dy, (1)« ¢, Wt 1= en() ) <o " Thew (4, () = »
and oy (d,:(1) = of,_,(d,;(1)). But because d,;(t) - 1"+ ¢, we have that

ol (das(2) = 0’5:'-1(‘1,; +(2))
and the same calculation as above proves the induction step also in this case.

Now suppose that case 3) applies. Because (F, K /K) is a nice pair we have that
(p—1)|eg and as t is of the form y,,(+") for some ¢ we have according to 8.3,
t = — (e, — my) mod p°. It follows that.

gl

8.1.7) Toa(t) = — (€, — my) 79 mog p'+ i k<ign
(cf. (6. 3.5)). Let ¢,,(t) = r = 0, then ¢’ must be a ¢, (i) with s < p” because ¢’ is the
next largest actual change point. Now if s > 0 then

(8.1.8) Cpri(t) = 0 modp*?
because (F, K/K) is nice. Furthermore ,;(t) <i—b (cf. (6.3.5)) so that

Cpra(i) = 0 mod p* T,
further (e, — m,) < p® (condition (8. 1. 3)). It follows that case 3) can only occur if ¢’ is
the actual change point t’ = ¢, (i). We then have (cf. (7.1.3) and (7. 1. 4))

<nfi(®) + D' (ex — dy) __p—1
pr+1__1 (pr+1__1
pllex—dy) - p—1

€ .
< Tn'i(t) é p,+1___ 1 - p,-_,_l 1 (el—mo— 1) _?4:%:_1' = Cpro(‘)

pé

— (e, —mg)p —pF—1

) (6, —mo—1)

where 0 < e <1if r >0 and 0 <e<p—1 if r =0. Note also that 7,,(t) = ¢ ()
is impossible because then ¢,;(t) = —1 which contradicts ¢ =k + 1. The number
(p™**—1)"Y(ex —d,) is an integer because (F, K,/K) is nice, p* = 0 mod p"+*ni®
and (p™'—1)7(p —1) (6, —m,—1) >0. Now

Oy —1 &
(s —ma)p™ 2 (e —mo) 2 ZFr g (s —mo— 1) +

because of (8.1.7) it follows that case 3) can only occur if

e '——df X 14
(8.1.9) wilt) = i P — P e — ).

Suppose first that { = & + 1. This gives us

e "‘“‘d r . %n/i —_
Toa (8) = P7F° 'p—rg——l——l_‘___pﬁ; —pPP /(t)(el"’ mo) + dpr ™.

Further d,,(t) = 7,,(¢) + p°‘""'a)(e1 — M) = Cyro(i) and c,r() is an actual change point
so that

s (o 0) = s () = |7, + 1) (— 1) + p* 5

v

(p'—Vex+ (p—1)m, -1, ex — dyr
7 +p p,-+1__1 .

The difference o;_y(dyy(2)) — o4 (2) is larger than or equal to
p—1

p Pa”/i(‘) (61— mg) — (g — my)
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because

i— 1 € _df r ey — T
plex + pt lﬁ”‘f’“'"p—r%_%“dwpi“’=0-

Further

"‘n/z(t) (

pTp 17 M) — (e —mg) = (p™F — 1) (e, — my) + 1

because a,;_;(t) = o, (t) + r and (e, — m,) = p. And according to (8. 1.6) we have
that

Norm,, (F*'(K,)) < F™*t!(K,)

it 17 2 7,0 + (p“n/k(‘) 1) (e;,— my) + 1, because 4 (#') = — 1. This proves (ii)
for k =1¢ 4 1.

Finally if 7 >k 4 1 then case 2) cannot occur. For suppose that

— dpr i
G110 ult) = 1y Te(®) = p* I — P e — ).

All (j,, jo)-level i-change points are = 0 modp* ! if j,, j, = 1. There are therefore be-

— dyr
cause Cyr, (i) < p* p’+1—1 no change points of type ¢; ; (i), j;,j; = 1 between 7, (t) and
Cpro(t). It follows that (cf. 7. 4)

(8. 1. 11) Co,i (1) S ¢ (i) if pT>j >0.
Using Lemma 7. 5 we find

(8. 1.12) 1+ e pr(t —1) = co;(0 — 1), 0<j<p.

Now suppose we can show that

(8. 1. 13) Opi1 (t) = o pr(i — 1) 4 1.
We know that ¢,;(¢) = r, therefore ¢,; () <r, and (8.1.12), (8.1.13) then imply
tyjici = — 1, (cf. Lemma’s 6.1 and 7.3). This is a contradiction because i >k + 1
and £ is the largest index such that ¢,, () = —1.

It remains to prove (8. 1. 13), this calculation is done below in 8. 5. This proves (ii).

(iii) follows from (ii) because 7,,(t) is of the form y,(s’), ¢,;(t) = —1 for i < b

and d,;(t) = 7,;(t) + 1 for i < b.
To prove (iv) we distinguish two cases A) «,,(t) >0, B) «,,(¢) = 0 where k£ = k,(¢)
as before. First suppose that «,,(t) > 0. We shall show that if ¢,,(t) = r then

8.1.14)  aNi,_ (M 4,) < a4, ;, 1<sZni>p,

(8.1.15)  Tryy(mm4,) < x4, ,, 1<s<n
Let j = 0 if r = —1, j = p" if r = 0. First suppose that s = k, then either a,,(t) >0
or t,,(t) > 0 (or both), otherwise we would have «,,(t) = 0 by (5. 1. 8) and Lemma 6. 1.
Now 7,,(t) = (e,—m )P mod p™ Ot 2 <ep—my < P77, ay,t) +b—1 <5
(cf. (6. 3.5)). We can therefore apply Lemma 7.6 (with g = b — 1 f = o,(t)) to con-
clude

(8. 1. 16) Tapl) = () > c(s), s ki >

30*
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15 < s <k we can apply Lemma 7.7 (with a,,, ,18) for 1) 1o conctude
(8. 1.17) Tuis (1) 2 0 (1) > ¢4;(9), >0, <s <k
It follows that for b <s < n

Tage (1) — €10(8) Z (1 — mo) (" + 2) P,

(8. 1. 18) iz s csen

Sua(t) — C5(s) Z (e — mo) (p* + 1) p™,

= ¢4(s)
< ex—(Pp—i'—ij:{mo + 1) L pipfi,l
= 0 mod p*~? '
| 0
l =py = (G
LN
-+ o0

= (e, —my) P%I'“)

| = O0modp*™?

(si<1ifi>1; o< P=Y i1, cf.(7.1))

This is most easily seen by looking at the picture drawn above. Use s = b + «,,(t),
%,;,(t) 2 0 and condition (8. 1. 3) of the proposition. That the relative position of z,,(t),
. (t) and c¢,;(s) with respect to points = 0 modp*~! is as indicated, follows from the
following facts:

Cis(8) < O (t) < Tp(2) (8. 1. 16), (8.1.17) ¢;y(s) =0 modp*tif i >j >0

_ex—(p—1(my+1)  ep
pi—1 pi—1

Ciols) = mod p*~?

where 0 < e <1, f 0 <i<p"! (cf. 7.1) and ex — (p—=1) (my + 1) >0.
Finally for & < s < n we have '

. “nfs ~. _ ex — (P - 1) (mo + 1) pey
(e, —mo)p™ = (e,—my) = i1 : 7i—1

which in view of (8. 1. 16) shows that the picture represents things correctly and thus
establishes (8.1.18). It is now a matter of some straightforward calculations to prove
(8.1. 14) for b < s < n. This is done in 8. 6 below.

Now let s < b; let ry be the smallest natural number such that p™ = (e, — m,).

Note that r, < b because of (8. 1. 4). Because On e >0 We know that b <k = k,(t)-
It follows that

(8.1.19) 0, (t) = 011y (Omper1 (1)) = 0041 (1) = exp® — (e, — my).
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Using (8. 1. 19) one checks directly that (8. 1. 14) holds for 8 = s >b —r,. Cf. 8. 8.

Now suppose that 1 < s < b —r,. Because 7,,(t) is of the form y,, (') for some &’
(cf. the proof of (i) above) we have that

(8. 1. 20) gy (Taps () — &) = Ay (7, (1)) i & < p*°

It follows from this that (because o, () = 7,,(t) — (e,—m, ) and p™ > (¢, — m,))
(8.1.21) Tus(t) = 0,,(8) f s b—rg.

To prove (8. 1.14) for s < b —r, it therefore suffices to show that

(8. 1.22) Tojo1 (Tuss (1)) > 05y (0,5 (1)), SEb—r, 1 =1,

and this follows from 7.8 because s = 1, e = (e, — my), (e, — mg} = p.

We have now proved (8.1.14) for all 1 £ s < n, in the case Epieyey > 0. As to
(8. 1. 15) we remark that

(8‘ 1. 23) 0'2/5—1 (2Gnls(t)) - Ugla—l (0n/c(t)) g p—lan/a(t) — 1L

Using this it is not difficult to prove (8. 1. 15) for s = b. Cf. 8. 9 below. To prove (8. 1. 15)
for b >s >b—r,, where r, is again the smallest natural number such that T = (ey—my),
we use the fact that

(8. 1. 24) Oups(8) = €gp® — (e, — my)

which follows from ¢, (0,,(t)) = — 1. Cf. (8.1.19). To check that (8. 1. 15) holds for
n >s > b—r,is now straightforward. Cf. 8. 10 below.

Finally for s < b—r, we have that z,,(t) = o,,(t) (cf. (8. 1.21) above); more-
over t,,(t) is of the form y,,(¢') for these s. So that

(8' 1. 25) )“s/a—l (tn/a(t) + 1) = ls/e—l (Tn s(t)) + 1= Tu/s—-l (t) + 1

and this proves (8. 1. 15) for s < b — r,. We have now proved (8. 1.15) forall1 < s < n.
Note that the hypothesis «,, , >0 has not been used in the proof of (8. 1. 15).

We are now in a position to prove statement (iv) of the proposition in case A;
i e. in case &,y o >0.

Let = be a uniformizing element of K; and let =,, s = 1, 2, ..., n be uniformizing
elements of K, s =1, ...,n, chosen such that N,, ;(n,) = 7,_;, Nyp(n,) = 7. Let
z € Ag; it follows from (8. 1. 14) and (8. 1.15) that for s = k,(t) =k

(8. 1. 26) Norm,m (xn;) = buax"’ + b“s__lxus-'l + oo+ b+ by mOd:n:f’;/‘(t)

where
0]
bus = zeni(a)r t(s) = P“"IE i, 2z, € AKa 'Us(bu,) = Tls ) = aﬂs(t)7

vs(bi) = Gn/s(t)a i=0,1,..., u,—1l,u,=p + - +p"+1+1
if L”h‘:rj,j=n, ...,S+-1.

(8. 1.27)

Typt1

This can e. g. be seen as follows. One uses induction. Suppose (8. 1. 26), (8. 1. 27) have

been proved for s 4+ 1. Because 7, ,(¢) = 0,,11() = pam/s+1(z) (6;— m,) we also have
Norm,,, , (zat) = b, . ™+ -+ + bz + by mod 53¢,
F

Ug
a1’ o



238 Huzewinkel, Norm maps for one dimensional ‘/wmal groups. Fl
It follows that
Norm,, (2a}) == Norm, , RO 2 1 N ;_ Notm, , ,,(b,) mod a®

and hetnce

Norm,, (zn}) = Norm,_ ,,(b

Yg-1 1 dpfot)
_ wopr® 70 + -+ Norm,y,(by) mod ™.

Now let ¢,,.,(t) = r,,,, then we have using (8. 1. 14), (8.1.15)
Normsﬂ,,(buyﬂx"’ﬂ) =b, "+ - - - + bjz + by mod ns®
with v,(8]) = o,,(t), and for £ =0,1, ..., u,,,—1
Norm,, 1, (b,2") = byz"+ -« - + by'z + by moda;""

where i’ < pT+1t! + i < u, and v,(b}’) = 0,,(t). This proves the induction step.
For s <k =k,(t) one sees from (8.1.14) and (8.1.15) that

(8‘ 1. 28) Normn/s (xnﬁ,) = Tr,,/,(Norm,,,,, (ftﬂ:‘)) mod ﬂ;‘“l'(t) .

We now use the trace lemma of Section 4 above to keep track of what happens to
the “leading coefficient” of (8. 1.26). We have

(8.1.29)  Tr,, ,(z,7) = z,pn®" modna*1Y b <s<k=k,(t)
/ () 8—1

it v,(2,8) = 1,,, 2(s) = POt t(s —1) = p~i(s) = p™Y, z,€4,.

This follows directly from proposition 4. 1 and condition (8. 1. 3). Cf. 8. 11 below.
From (8. 1. 26), (8. 1. 27), (8. 1. 28), (8. 1. 29) and (5. 1. 5) we obtain for b < s < k
(8.1.30)  Norm,,(znt) = b,z* + b, ;2* " + - - + b,z + b, mod;***

where u=u, = p'n+1 + et P'k+1+1’ bu = ani(a), t(s) = paﬂhmt? ’l),(b“) = tﬂ/ﬂ(t)7
Vg(by) = 0,,(), i =0,1,...,u—1, b < s < k. In particular we have that

(8.1.31)  Norm,,(zn)) = c,2* + ¢, 2 ' + - + 6,2 + ¢, e B
U= Uy, ¢, = ané(b), t(b) = t7 vb(cu) = Tnlb(t)) 'vb(ci) g au/b(t)v l‘ = Oa 1s ey U— 1.
Now 7,,(t) is of the form y,,(¢') for some t'; further
'Ub(C,;) Z O'nlb(t) Z Tn[b(t) - (31_‘7"0) > Tn[b(t) —Pb, = 0) 11 ey B— 1.
It follows that
6. 1.32) 7)0<Trb/0 (€)) = Apjo (Tupp (1) = Tpp(t) = G0 (2),
T uo(Trye(€d) Z Ay (Tap (1) = Tao (1) = g t), i = 0,4, ..., u—1.
Putting (8. 1. 31), (8. 1. 28) and (8. 1. 32) together yields
Norm, o (z@) = c,a* + + -+ + ¢z + ¢ mod 0"
(8.1.33) , .
'”o(c:;) = Gnlo(t)’ ’l)o(Ci) = an/o(t)7 1= Oa 11 ceey U— 1

and this proves statement (iv) of the proposition in the case that «,, ¢ > 0.
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Now suppose that we are in case B; i.e. «,,(t) =0 where k= k,(t). Then
tu(ty =0fors=mn, ..., k+1;¢,,t)=—1fors=k k—1, ...,2,1;b=k Ttis
not difficult to check that the proof given for (8.1.14) in case A for n = s = k also
works in case B provided s > k. (The hypothesis «,,(¢) > 0 is used twice: to establish
(8. 1.16) in case s = k and to establish (8. 1. 19) in case s = b.) The arguments used to
prove (8. 1. 14) for s < b in case A also remain valid, except in the case s = b (cf. 8. 1. 19).
In the case s = b = k we have instead of (8. 1. 16) (cf. Lemma 7. 6 exceptional case)

(8.1.36) 7p(t) = 0yp(t) > cio(d), i > 15 Ty (1) = s (1) = €1 (0).

There are therefore two possibilities in case B. ’

B, 7,5(t) > cy0(b) in which case (8.1.14) also holds for s =k = b (ef. (8.12)).
B,. 7,5(t) = ¢44(b) in which case (8. 1. 14) fails to hold for s = k& = b.

Formula (8. 1. 15) has been proved above without any hypothesis on «,, (t). We are now
in a position to prove (iv) also in case B. Exactly as above one shows that

Norm,, (¢4) = b, + - - + b,z + by mod z"="

Ve(by) = T () = 0 (8); 0(b)) = onp(?), .
i=0,1,...,u—1, u=(@®—K)p.

(8. 1. 35)

Applying Norm,, , to this we find
(8.1.36)  Norm,, ,(zz}) =c,2¥ + -+ + ;& + ¢ mod mine-19

where u’ = up in case B,, and then v,_;(cy) = Tpp_1 (t) = 0y (£) because «,;,(t) = 0
and 7,,(t) = ¢,o(k); or u’ = u in case B; and then v;_,(c,) = 7, () = 0,,_, because
T (t) is of the form y,,(t') for some #'. Also in both cases v;_;(c;) = 0,3, (f). Using
(8. 1. 36) instead of (8. 1.31) one obtains in the same way as in case A that

(8.1.37)  Norm,,(za) = cia + «+ - + ¢jz + c; modn"*"

vo(cy) = Tn/o(t) = n/o(t); vp(c}) = Tn/o(t) = Un/o(t)’ i=0,1,...,u—1
which proves statement (iv) of the proposition in case B.

8.2. Lemma. Let (F, K_/K) be a nice pair, let o,,(t) =1i—b, t>b and

Xipp (Tn/b(t)) = (p*?—1) (e, — my) + 7,5(2).

~ (Note that (v, (t)) is defined, because 4;,(7,;(t)) = 7up(¢), from whlch we also
see that x;,(7,5(2) = 7,5(2)). ‘

Proof. According to Lemma 8. 3 below we have

. _ i-b___ 1
Zip (Tapp (8)) = (T (2) — PPeg (i — b) — mo) p*~° + my + exﬁp—___'—i—

and because ¢,;(t) = —1 and «,;(!) = i—©b we have that
T (8) = p‘—btn/b t)—@E— b)P‘BK

(by the definition of the functions z,;). q.e. d.
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8.3, Lemma. Let (F, K K) be a mice pair. If the fanction y, © b & defined
for a certain s, then
b, s pt—1
Zip(s) = (s — pPeg(i —b) — mg) p*™% + my + S
(and z,,(s) is defined for all s for which this expression is positive).
Proof. For calculations like this the following fact is useful. If a,, a,, ..., a, is
a series of integers, t € R and we define
a; + 1 a, +t._4 ;a1
) RERR =_'-_I")'—'—a h = p T P 1
then ¢, = [¢,]. Using this we find

12

t1= T

Aip(t) =

: m 1 iy P —1 !
Pbex(l"“b)'Fmo_F.yof‘i—1—F——'exp_(—b) P+ 1 +pc-b .

The lemma follows from this.

8. 4. Proof of (8. 1. 6). Because v,(z) = (p*® —1) (¢, — m;) + 1 and Lemma 8. 2
we have that v,(x) = g (T,p(?)) + 1 which implies 4;,(v,(x)) = 7, () + 1 = d,; (1)
which implies (8.1.6) because ¢,;(t) = —1, ;1) =—1, ..., 4 (t) =— 1L

8. 5. Proof of (8. 1. 13). We have

i eg — d,,r _ punli(t) (

‘n/i(t) =r >0, Tnli(t) =p ?—Tl—::T € — mo)

and we must show that o,,_;(£) = ¢,ro(i — 1) + 1. First, suppose that 0 < r <h—1,
then d, = 1 and we find

Opjica (B) — Cpro (1 — 1) — 1 =7, (8) — e (1 — 1) — 1

~ pitr X dpr —p" p“n/i(t)

= E pr+1____1 (1

i—1 R — dpr

- ex—(p—1) (mo + 1)
+dyp*™'—p i1 T p,+1__'1° —1=0
because p=! = p M (e, — my) as r + Opi(t) = 061 (1) S i—1—b and p* > e,—my
and
req € — dyr - ex-—-dr
+1 _pf+1-—y1 _ pi-1 T ——.?1' —1=0

(because (p™' — 1)"*(ex —d,,) is an integer > 0).
Now let r = B —1, then d,, = 0 and we find
Gugia (1) — (i — 1) — 1 2 pHht 2B g3 e
ex—(p—1m+1)
r—1

- e
_pi1phii+

2 p(P =P — P e —me + 1) 20

because p® = e, —m, and o, ; (1) < i—1—b.
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8.6. Proof of (8.1.14) in the case o,y >0, n=s>(t)=> Let
n=s >1,(t) = b. First suppose that r = ,,(t) = 0 let j = p", and ¢ >j then

hecs (O'n/s(t))"“ 0';13—1 (e;(8)) = i(anle(t) —¢;;(9)),
01 (O (8) — Ghye_1 (€0(8)) = P" (0 (t) — €5(8))s
and o3,y (0 (1)) = Opjes (8), 0y (€14(8)) = o1 (€0(5))-
It follows that
05—y (05 (2) )— O () = (1 — P7) (0, () — ¢4(5)).
Using (8. 1. 18) and (6. 2. 5) we see that for ¢ >j
e (s () — Taguma 1)) Z (i — P") (e — mg) (" + 1) p™*O — (e, — my)
2 (P + D™ (e — mg) — (e, — my)
2 p" "0 ey —mg) 2 p™ (e, — my)
which proves (8. 1.14) for the case r =0, p" <i<p*, b<s<n

Now let r = ¢,,(t) = — 1, then for : = 1

02/8—1 (a'nls (t)) a/a—l (cio (S ) =1 (0 nfs (t) Co (S))

and
(o) — s (cu)) = | L) (p;—i) + 0w (2) J _ [ (m,+ 1) (p;i) + ciols)
Lt D) (=) o) (m 1) (p—1) +eals)
= p ‘ p
= P (0w (8) — €(9)) + 1.
It follows that o, (0, () — Gp_y (8) = (E— p7) (0, () — €0(s)) — 1 and hence
0t s1 (e (1)) — Twa () = (L — p73) (B 4 1) (e — mg) p™* — 1 — (¢, — my)
= (p—1) (7" + 1) (e, — me)p™*7 1 — 1 — (e;— my)
= ((p—1) (" + )P0 — 1) (e, — my) — 1

Ph “n/s—1(‘>(81 —my) —1 = P%lsnl(‘) (e, — my)

which proves (8.1.14) for the case r=—1, 1 < i< p", b<s<n
It remains to prove (8. 1.14) for b < s < n, i > p"~*. We have (cf. 8. 7 below)

(8.6.1) @) = p™94.

Gn/s
For i > p"! we have

0§/a-1 (Oe () — Ty (B) = s/s—l( wis (1)) — Opjoy () — (€, — mg)
2 0}1s1 (0 (1)) — 0225 (0 (1)) — (e — o)
> (i — PP Opga(£) — (63 — 1) 2 0y (1) — (& — m0g)
= Puﬂ/s(&)t —(ey—my) = P“ﬂ/'—lm (63— my)

Journal fiir Mathematik. Band 268/269 31
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because t = (p* + 1) (e, — m,), according to condition (8. 1. 2). This concludes the proot
of (8. 1. 14) in case &, ) >0, n 2 s >1,(1) = b.

8.7. Lemma. Ifb<s<n b=1,t) >0, then a,,(t) = p™t.

Proof. This is obvious if s > k,(¢). Using 62,_,(¢') = o%,_, () if ¢’ = ¢, it therefors

remains to show that oj,_,(pt') =t' which follows from the definition of o3, ;.

8.8. Proof of (8.1.14) in the case Cpgy >0, D28 >b—r,. I i is not a
multiple of p*~! we have

Uj]a-l (“n/s(t)) — Ty (1) = 02/5—1 ("n/a (t)) — Oy (t) — (€3 — my)
2— a:/c—l (anle (t)) - ag/a—l(an/a (t)) - (61 - mo)~

And because o,,(t) = exp® — (e, — m,) this is larger than or equal to (cf. (8. 8. 1) below)
0'2/5—1 (‘%{P‘kI — (&g — mo)) — 02/.-1 (exps — (e, — mo)) — (e, — my)

= egp®—(e;—my) + p*! “‘P—l(exps —(e;—mp) + (p—1) (m, + 1)) — (&g — my)

= egp’— (31’:"" mg) + p**

—p (exp® — (e,—mg) + plex—ex + (p—)my + (p— 1)) — (e, — my)
—1
=pt—(eg—mg) +p N eg—mg) +pleg—pTH(p—1) mo‘—gT" — (eg—my)

o —1
T—(e;—mg) — P 7

because of conditions (8.1.4) and (e;— my) = p.

=p g .Pb_/"‘ - (el —my, + 1) g 1= dn/o—l (t) - Tn/c—l(t)

If i is a multiple of p"~! we have as above

O'f;,,_.l (an/s () — Tpppa () = Gils—l (exp® — (e, — my))
— 051 (ex P — (6 — mg)) — (e,— my)
which is larger than or equal to
P (exp” — (&1 — M) — 2exp" " — (e, — my)
= PV (erp® — (ey— my)) — egp® — (e, — my)

= (P""—1) (exp" — (e1— mp)) — 2(e1 — my)

= egp'—3(e,—mg) Z PP —3(e;—my) 21
because of (8. 1. 4). Note that we have used

(8:8.1) I >t >4, t €N}, (') — 0l (V') = o)y (1) — ol ().

This is obvious from the definitions of o¥,_;, o}, if j = 1. If j = 0 to prove (8.8.1)
one uses _
t—1

¢ —
0'g/s—1(t') = 0'2/3—1“) +1+ ———-;——

Topa (8) = 03y 1 (1) + 1(2" —2) (i >0).

8. 9. Proof of (8. 1. 15) for n =s=b=1,t). If s= b then (cf. Lemma (8. 7))

bl

(8.9.1) Oppa(t) = oy,
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Using (8. 1. 23) and (8. 1. 2) we see from this that
02/1—1 (2 Un[c (t)) - rn/s-—l (t) g 0'2/:-—1 (2 Uﬂ/l (t)) - 03/1—1 (au/: (t)) - (el - mO)
g c?lc—l (2 o'n/u (t)> - 0?/,_1 (on/o (t)) - (81 - mo)
= pip Yt — (e, —me) — 1
= p ™ P ey — my) + pT ™ pley — my + 2) — (e, — mg) — 1
=p- Pun/a—lm (ey—mg) = Paﬂl‘(‘) (64 — my).

8. 10. Proof of (8. 1.15) for 8 >s >b—r,. Using (8.1.23), (8.1.24), (8.1.4)
we see that
0% (20'1./; () — Tpjpr (8) = 0941 (20,5(2)) — 0%,y (Gnla(t)) — (e, —my)
= p o, (t) —1—(e,—mg) = P_l(exp8 —(ey— mo))— 1—(e,—my)
e,—my,
p
= Gy (8) — Tpje (1)

8. 11. Proof of (8. 1. 29). Because b <s < k = k,(t) we have «,,() >0 so that

t(s) is a multiple of p. We can therefore apply proposition (4.1) to obtain (using that
2, € 4,)

= egp®t—

— 1 —(ey—mg) = egp® ™ —2(e,—my) —1 =1

Tr,,_ (2,7°) = pz,7) (¥ modz, w7 #0+

where r, = p~*[(m, + 1) (p — 1) + 1]. It therefore only remains to show that
va—l(zs) + 27‘3 + p-‘lt(s) + 1 _2_ dn/a—l(t)'

Now v,(z,) + t(s) = 7,,(t), 80 that v,_,(z,) + p~*t(s) = 7,,_,(t) — p*~'egx which means
that we must show

2r,+1—p'lep = P“"/'_l(‘)(el — Mmy).

Because «,, ,(t) = s—1-—25 we have

P
> p*lex — 2(e;, — mg) = p 9 (p — 2(e; — my))

> p 19 (e, — my)

2,.8 + 1 _ps—lex g 2}7’—161{_'2_(2‘:-—1_)'(81'_"7'0) +%+ 4 __ps—lex

because p® = 3 (e, — m,) according to condition (8. 1. 3).

8.12. Proof of (8. 1. 14) for s =k,(t) = b in case B,. Because (8.1.16) holds in
case B, we have (8. 1. 18)

Tois (1) 2 C0i(8) 4+ (P* + 1) (63— my).
Further because we are in case B, d,,(t) = 7,,(t) for all s. Asin 8.6 we now see that
0151 (s (1)) — Tgaa (8) Z (8 — P77 (0 (£) — €04(s)) — 1
2 —p ) (P + D) (e—m) —1 25 @4 1)-2—1>1,

which proves (8. 1. 14) in this case because d,, ;(¢) = 7,1 (¢!) + 1 = 0,,_;(t) + 1 (the
case i > p"! follows from the case i = p*™7).
31*
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9. Caleulation of 6, (). <, (#) and 7, ()

In this section we shall assume that K /K is an extension such that

m,=m(K, /K, )=1+p+ -4+ p*Neg +m, foralln

9.1. Lemma. If ¢,,(t) <h—1, then ¢, , ,(t) =—1, where ¢ is the smallest
integer such that p° = ey.
Proof. 1f 4,,(t) = —1 then ¢,,(t) = —1 for all u <s. (Cf. Lemma 6. 1.) Now

suppose — 1 < ¢,,(f) <h—1 and let j = ""‘w Then

Tn/a-—l (t) = Jﬂ/&—l (t) = Ui/a—l(au/: (t)) g ps—l

because d; >0 as 1 < j < p"*. Let u be the largest integer such that ,,(t) = — 1.
Suppose that u < s—c—1, then
t': = an/u+1(l) Z Gn/t—l(t) -\é ‘_1'
However (cf. (7.1.3)), for i = 1,2, ..., p"?
a1 _ (eg—dy)p*! _ex—(p—1)(my+1)  pe

P> equ ) = e i1 pi—1°
because s —1 >u + c¢. This shows that ¢, ;. (") = t,,,,(!) = —1 contradicting
our assumption that u <s-—c—1. Therefore u = s—c—1. q.e. d.

Let j,(t) be the number of indices < n such that ¢,,(t) = h—1 (ef. (5. 1. 13)).

9. 2. Lemma. For every integer b > 0 there is a constant t,(b) independent of n such
that t = ty=j,(t) < k™' (n —b).

Proof. j,(t) >se ) =h—1=" =4, (t)=h—1e1,, (t)=hr—1
Hence if j,(t) >s then o,,_(t) = p** ¢, and ¢,, ,(t) = h—1 then means

PPVt < cppi(n— ), i=0,1,2,...,p"1—1,
and this implies in particular

exp”"  ex—(p—Yme+1)  pe _

P < o () = g PF—1 Y

e pﬂ—s
which implies t < p" *eg. Therefore if ¢ = 1, = egp® then j,(¢) < A~ *(n —b).

9. 3. Corollary. I,(t) = n—hj,(t) —a,,
where the constants a, , are bounded independently of t and n.

9. 4. Corollary. For every b > 0 there is a constant t, € N mdependent of n such that
L,(t) = b for all t = t,.

Proof. This follows from 9. 2 and 9. 3.

9. 5. Lemma. Let? be a fized integer > 0. Then as n varies we have j,(t) = h™'n + ¢,
where the ¢, are a bounded sequence.
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Proof. Note that

Jn(l) > 8 & p“P VY < ¢y (n— u), i=0,1,2,...,p"'—1; u=0,1,...,¢
n—t—1
-i <%§;:r::"i‘p_“h+“, l === 1, 2, cany Ph_l-‘-‘i; 0 = 0, 1, ceey S
- ‘
- _(exp”™"  ex—(p—1)(me+1)  pe \ _unsu _
t<<ph——1 1 1 P , u=014,...,s

The lemma follows because the d; are constants > 1 for i = 1,2, ..., p* ! —1.

9. 6. Corollary. Let t be a constant integer > 0. Then as n varies we have

- h—1
Tn/o(t) = 7 neg + bn,_t

where the b, ; are bounded independent of n.

Proof. It follows from 9.5 and 9.3 that [,(f) = d, where the d, are a bounded
sequence. Let k(n) = k,(¢) be the largest integer k such that ¢,,() = —1. Then
k(n) = n —j,(t) — d, where the d, are bounded by ¢ + 1 according to Lemma 9. 1.

Applying 9.1 again we obtain from the definition of 7

nls

T (1) = PO IO 4 o

1

where (c,) and (¢,’) are bounded sequences. Therefore if 1,(f) >0

Tuty @) =1+ (h— 1), @) + ¢)eg - ph® + p=0 Vim0 . ¢y,

(h—1)

Tnjo @) = }Lz”d)/o (%/z”d) (i)) = ((h — 1) .0 + C;)ex + b, = o n-eg+by;

where the b, and b, ; are bounded sequences (use the fact that /,(z) is bounded and 9. 5)’
If 1,(t) = O then

- - h—1
Tao(t) = P—k(n)"n/k(n) t) + k(n)eg = T ex + b,

where (b, ,) is a bounded sequence because k(n) = n — j,(t) — d,, where (d,) is bounded,
and j,(t) = A~ 'n + d, where (d,) is bounded.

9. 7. Corollary (= easy half of Theorem 3.1). Let K /K be any P—extension;‘F
a one parameter formal group over Ay. Then there exists a constant ¢, such that

F-Norm,,,(F(K,)) < F*»(K)
where o, = h™'(h — 1)egn —¢,.

Proof. Take b >0 large enough so that m, =1+ p -+ -+ p" Yeg + m,
for n = b. The I-extension K _|K, satisfies the condition stated in the beginning of
this section so that we can apply 9. 6 to find a constant ¢; such that

Oup(1) 2 Tpp(1) — (6, —my) = h~l(h —1)egp®n —c;.

It follows from this that, for large enough n, g,,(1) =_2b10(0’b/0(1))‘ The corollary
follows from this because, for fixed b, 4,,(t) = p~°t + ¢, where (¢,) is a bounded
sequence.
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10. Proof of the theorem in the nice case

In this section (¥, K /K) is a nice pair such that e, — m, 22 p and ey ;2 e, — m,.
To prove Theorem 3. 1 by means of proposition 8. 1 we must show that there are enough
integets ¢ to which 8. 1 applies.

10. 1. Lemma. Let n €N be fized and let t, € N be such that 1,(t,) > 0; let s, = 7, (2,)-
Then for every s = s, there exists an integer t = t, such that

(i) t.1s of the form g (,(t'), ¢ €N, (i) 7,0(t) = s.
Proof. Let: Iy = 1,(t;) > 0. Then 4, (7, (t5)) = 8, and hence y;4(So) = Ty, (2o). Lt
(10.1. 1) =ty + 21,0(80) — Tn/z.(to) = to-

If 1(t) =1,() = l,, then ¢, satisfies (i), (ii) above for s =s,. If [,(t;,) =+ 1,, then
l,(t;) >1,. We want to show that

(10.1.2) T (t) = Tap, (b)) + 8 — L

This can be done as follows. Let ¢, < t(1) < ¢(2) - -+ < t(r) be the integers between
t, and t, (¢, included) where [,(t) changes value. I. e. ¢(1) is the smallest real number larger
than 2, such that [,(¢(1)) >1,(%,), etc. ... One has t, <t(1) < --- <#(r) <t;. Let
1(@) = L(t()), 1y =1,@y), then [, <l(1) < - - <l(r) £ 1,.
One has (cf. the definition of ¢ and (6. 3. 3), (6. 3. 6))
npa (L)) — 041, () = (1) — 2o,
@n/l,(t(z)) - Qn/l,(t(i)) = (t(2) - t(i))pln.‘l(l)’

Ont, (13)) — 04, (1(2)) = (£(3) — 1(2))p"*®,
(10. 1. 3) )

Ot (F(1)) — @y, (1(r — 1)) = (2(r) — £(r — 1)) p"~Y),

Ot (1) — Qur, (8(1)) = (t; — t(r))p"
(note that 1,(t(1) —&) = L,(%), thus g, (t(1) — &) — 0., () = t(1) —e& —1,, taking
the limit as ¢ > 0 gives the first of the formulas above because g,;(t) is a continuous tunc-
tion of ¢; the other formulas of (10.1.3) are proved similarly). Adding the formulas
(10. 1. 3) and using I(i) = 1,, i = 0,1, ..., r gives

Onst, (81) — O, (B0) = 81— 1y
and hence (cf. (6. 3. 8), (6. 2. 5))
T (1) = 0upt, (81) = 0, (o) + 83— 89 = Tupp, (80) + 21— 12
which proves (10. 1. 2). Using (10. 1. 1) we see .
T, (8) = Tn/l.,(to) + (‘to + Aj0(S0) — Tn/z,(to))““‘ to = Xujo(So)
Now
Aty (Tt (22) = T, (8) = 2100(80)

which implies 7, (t,) < #5,0(S0)- Now let '

(10. 1. 4) ty =ty + Kiy0(So) — Ty, (22)-
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If 1,(t,) = 1,(t;) = [, then 2, satisfies (i) and (ii) of the lemma for s = s,; if not then
L, (t) =1, >1, and we construct a t, from ¢, as we constructed ¢, from ¢,. This process
must terminate because [, <!, <, < - -+ < n. This proves the lemma for s = s,.

One proceeds by induction. Let 2, satisfy (i) and (ii) for s = s,. Let I = [,(2,), then
Zyo(s + 1) is larger than z,,(t,) = x0(s). Let

b=t + xyols + 1) — 1(2,)-

If 1,(¢,) = I, then t, satisfies (i) and (ii) for s + 1. If not then /,(¢,) >, (t) =1.... (same
argument as above) .... q. e. d.

10. 2. Proof of theorem 3.1 in the nice case. We have that (F, K_/K) is nice,
e,— my = p, ex = e, — m,. Now choose b € N such that p® = p(e; — m,) (p* + 3) and
p® = 2p™(e; — m, + 1) where r, is the smallest natural number such that p™ > (e, —m,).
According to 9. 4 there is a constant #; such that [,(z,) = b for all n. Let

ty = max{t,, p"tl(e,—my) + pT e, —my +2)}, s, = a0 (o) |

According to Lemma 10.1 above there exists for every s = s, a f, =1, such that
oo (ts) = 8, Top () is of the form y, (,0(¢") for some ¢’ €N; further [, (z,) = b for all
s = s, because t, = t,. We can therefore apply proposition 8. 1 with ¢ = ¢, for all s = s,.

This proves (cf. [3], Lemma (3. 2))

Norm,,(F*(K,)) = F*(K).

h—1
h
This proves the righthand inclusion of 3. 1. The lefthand inclusion was proved in Corol-

lary 9. 7.

According to 9. 6 there exists a constant ¢, such that 7,,(t,) = neg— ¢, for all n.

11. Proof of Theorem 3. 1

In view of 10. 2, 9.7 and 3. 5 it suffices to show that given a Iextension K /K
and a formal group F over Ay there exists a finite extension L/K such that

(1) L - K /L is a I'-extension, (i) e,(L) — my(L) = p,
(iii) e, = e,(L) — my(L), (iv) (L - K /L, F) is a nice pair

(where F is considered as a formal group over A, and e;(L), my(L) are the numbers of
the Iextension L - K /L corresponding to e, and m, for K_/K).

11. 1. Lemma. Let K'/K and L]K be two totally ramified galois extensions of prime
degree p and p’ respectively such that m(K'|K) > m(L|K). Let L' = L - K’, then L’[L and
L'|K’ are both totally ramified (galots) of degree p and p’' respectively and

m(L'[L) = m(L/K) + p(m(K'|K) — m(L|K)), m(L’|K’) = m(L/K).

Proof. Let M be the maximal unrami- K—L'=LK'=KM=LM
fied extension of K contained in L - K'.
If M+ K, then L-M=L-K'=KM,
which because M/K is unramified implies \
m(LIK)y=m(LM|M)y=m (K M|M)=m(K'|K), - M
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a contradiction. Hence M == K and L'/K" and L’/I. are totally ramified of degree p', p
respectively.

The statement on m(L'/L) and m(L’/K’) now follows from the K ——-L
fact that we must have ‘ l

Yrme¥ue =¥ym o ¥rx K———1L

where the ¥ p,, are the Herbrand ¥-functions. Cf. [9]; if P/Q is totally ramified, galois
of degree p then ¥p,(t) =1t if t < m(P/Q) and ¥y o(t) = m(P[Q) + p(t — m(P[Q))
ift=m(P|Q). q.e.d.

Let K /K be a I'-extension; L/K a finite extension. We write L for L - K. If
L /L is again a totally ramified I™extension let m,(L) denote the natural number such
that m(L,/L,_,) =1 +p+ -+ p" Ve, + my(L) for n large; we write e,(L) for
(p—1)7ey,

11. 2. Lemma. Let K /K be a I'-extension; qy, ..., q, a finite set of integers. Then
there exists a finite extension L|K such that

(1) Ly/L is a totally ramified I'-extension such that
M(LplLy_y) =1 +p+ -+ p" ey + my(L) for all n.
(i) g, divides ey g = vy(mg), i=1,...,r
(iii) ey(L) — mqo(L) = p-
(iv) ez = ey (L) — my(L).

Proof. Let q" be the smallest common multiple of the ¢, and let ¢’ = p®q where
(p, g) = 1. Let b €N be such that

MK K, ) = (L +p+ -+ p*eg + m, for n 2 b.

Take L™ = K, where ¢ = max(b, s). Then L®/L® satisfies (i) and P'leyu . Let

L®ILM be the extension of L® obtained by adjoining a root of X?—uz (. The

extension L& /L® then satisfies (i) and (ii). This follows from Lemma 11.1 above. Re-
placing L® with L{ if necessary we can also assume that

m(L(12)/L(2)) = €,(9) + mo(L(2)) 24

Let r=3if p=2and r = 2 if p > 2. There exists a totally ramified (galois) extension
L®|L® of degree p such that m(L®/L®) = r. (E. g. a socalled Artin-Schreier extension
- (cf. [2] (6. 5.)) for example.) It follows from Lemma 11. 1 that L&)/L® still satisfies (i)
and (ii). Further also according to Lemma 11. 1

m(LPIL®) = mo(L®) 4 e,y = 1 + p(m(LP|LD) —7r)
= pmy(L®) + peyo + (1 —p)r
which gives us my(L®) = pmy(L®) + (1 — p)r and hence
ex(L9) — my (1) = pes(19) — pmo(L®) + (p—r 2

i.e, LO/L® also satisfies (iii). Finally we get e;(L{®)— m, (L) = e,(L®) — m,(L®)
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as is easily checked. To get an extension I" such that (i)—(iv) hold we can therefore take
L = L® for i €N sufficiently large. q.e. d.

11. 3. Proof of Theorem 3. 1. Apply Lemma 11.2 with

{J'—Zli éz,]éph"l}u{pL—11L=1,2, 7ph—1}u{p—1}
as the set of the ¢,. Now apply 10. 2, 9. 7 and 3. 5.

12. Concluding remarks

12. 1. The Proof of Theorem 3. 1 is except for some technical complications the
same as the proof of the main theorem of [3] as given in [3]. This is a main reason why
we proved the main theorem of [3] as we did. There does exist in fact an easier proof of
[3], Theorem 6. 1. Let F be a formal group over A ;. The formal group F is isomorphic
over Ax to a formal group F’ with a logarithm of type f,(X); t;,¢,, ... € Ag, where
fo(X) =X+ 2% O(X*) €Q[T,, Ty, ...1[[X]] where f$ is obtained from f, by
raising all the parameters T, T, ... to the p*th power and f,(X) is obtained from f,(X)
by substituting ¢, for T;; cf. [4]; R(F') =hiff vx(t) =1, i=1, ..., h—1,0g(8) = 0.
If K is an unramified local field (i. e. vg(p) = 1), then one shows relatively easily that
it R(F')=nh, F'(X,Y)=[(f(X) + f.(Y)) where f, is as above, and

fuX) = )51 a,X?, ay=1,a,€K
then - ‘
vgla) 20, t=0,1,...,h—1,
(12. 1. 1) vgl(aw) =—n, n=0,1,2 ...,
vgla) = —n, nh<i<(n+ 1)k

Now let K_/K be the cyclotomic I'-extension and consider the commutative diagram

f:

F'(K,)——— K
F-Norm Troo (K} is the additive group of K,,).

fi

F(K——-———>

Using (12. 1. 1) and the trace lemma of [3] it is not difficult to calculate the image of
Tryo o f,- Finally f, is an isomorphism of F’(K) with the subgroup pAg < K*. This
provides another proof of [3], Theorem 6. 1.

12. 2. The same method as sketched above in 12.1 glves the same result as in
Theorem 3. 1 in case K /K is any Iextension, K a local field with perfect residue field
and F a formal group defined over Ay i) Where W(K) is the maximal unramified sub-
field of K.

12. 3. It should be possible to use the method of 12.1 to obtain another (and
easier) proof of Theorem 3. 1. The problem is that (12. 1. 1) is not necessarily true if X
is not unramified.
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