Netherlands School of Economics,

ECONOMETRIC INSTITUTE

Report 7207

CONSTRUCTING FORMAL GROUPS

III: Over \(\mathbb{Z}, \mathbb{Z}_p \) and \(\mathbb{Z}_p \)

by Michiel Hazewinkel

April 3, 1972

Preliminary and Confidential
CONSTRUCTING FORMAL GROUPS

III: Over \mathbb{Z}, \mathbb{Z}_p and \mathbb{Z}_p

by Michiel Hazewinkel

Contents

1. Introduction
2. The Formal Groups of Honda [6].
3. A Formula
4. Formal Groups over \mathbb{Z}_p, \mathbb{Z}_p and \mathbb{Z}
5. Two Counterexamples

References

1. INTRODUCTION

The present note merely gives some complements to the constructions of commutative (universal) formal groups in [4], [5]. In [7] Honda has given a method of constructing many formal groups over rings which satisfy a certain hypothesis, e.g. over $W(k)$ where k is a field of characteristic $p > 0$.

In case of $W(k)$ this method gives all isomorphism classes of commutative formal groups; this is not true for ramified extensions of $W(k)$. In section 2 we discuss a link between the constructions of [4], [5] and those of [7].

Let F_T be the formal group over $\mathbb{Z}[T_1, T_2, ...]$ constructed in [4] section (1.1). I.e. $F_T(X,Y) = f_T^{-1}(f_T(X) + f_T(Y))$ where $f_T(X)$ is given by $f_T(X) = X + \sum_{i=1}^{\infty} \frac{1}{i} f_i(x^{p^i})$, where f_i is obtained from f_T by replacing all the parameters $T_1, T_2, ...$ by $T_1^{p^i}, T_2^{p^i}, ...$

Let $t = (t_1, t_2, ...)$ be a sequence of elements of a \mathbb{Z}_p-algebra A and let F_t be the formal group over A obtained from F_T by substituting t_i for T_i. Every formal group over A is strictly isomorphic to some F_t [4], theorem (2.6)].

By means of some formulae derived in section 3 we prove in section 4 that for one dimensional formal groups over \mathbb{Z}_p or \mathbb{Z}_p the following holds:
let \(t = (t_1, t_2, \ldots), t' = (t'_1, t'_2, \ldots), t_i, t'_i \in \mathbb{Z}_p \), \(\mathbb{Z}_p \)
then \(F_t \) and \(F_{t'} \) are isomorphic if and only if \(t_i = t'_i \mod p \) for \(i = 1, 2, \ldots \).
As a corollary we get another proof of the fact due to Cartier [1], [3] and Hill [6], that two formal groups over \(\mathbb{Z}_p \) are isomorphic if and only if their reductions are isomorphic. It seems that this result is not generalizable as is shown by two examples given in section 5.

As regards terminology: all formal groups are supposed to be commutative; an n-tuple of power series \(f(X) = (f_1(X), \ldots, f_n(X)) \) over a ring \(A \) in \(X = (X_1, \ldots, X_n) \) such that \(f(X) \equiv MX \), mod degree 2, where \(M \) is an \(n \times n \) matrix, is said to be an isomorphism between the n-dimensional formal groups \(F(X,Y) \) and \(G(X,Y) \) over \(A \) if \(f(F(X,Y)) = G(f(X), f(Y)) \); \(f \) is said to be a strict isomorphism if \(M = I \), the \(n \times n \) unit matrix.

2. THE FORMAL GROUPS OF HONDA [6].

2.1. Honda's Construction (One Dimensional case)

Let \(A \) be characteristic zero discrete valuation ring of residue characteristic \(p > 0 \); let \(\mathfrak{p} \) be the maximal ideal of \(A \). Assume moreover that the following condition is satisfied

\[
(2.1.1) \quad \text{there exists an endomorphism } \sigma \text{ of } A \text{ and a power } q \text{ of } p \text{ such that } a^\sigma \equiv a \mod \mathfrak{p} \text{ for all } a \in A.
\]

One can take e.g. \(A = W(k) \), the ring of Witt vectors of a field of characteristic \(p \). Then \(q = p \) and \(\sigma \) is the endomorphism denoted \(F \) in [8], Ch. II, §6, the Frobenius endomorphism.

Let \(A_\sigma[[W]] \) be the noncommutative ring of power series in \(W \) over \(A \) defined by the multiplication rule.

\[
(2.1.2) \quad W \ a = a^\sigma_W \quad \text{for } a \in A
\]

Let \(u \in A_\sigma[[W]] \) be an element of the form \(u = \pi - \sum_{\nu=1}^{\infty} b_\nu W_\nu \), where \(\pi \) is a prime element of \(\mathfrak{p} \); write \(\pi u^{-1} = \sum_{\nu=0}^{\infty} b_\nu W_\nu \), \(b_\nu \in \mathbb{Q}(A) \), the field of fractions of \(A \). Now let
(2.1.3) \[h_c(X) = \sum_{u=0}^{\infty} b_u X^u \], \[H_c(X,Y) = h_c^{-1}(h_c(X) + h_c(Y)) \]

where \(c = (c_1, c_2, \ldots) \). Then we have

(2.1.4) Theorem (Honda [7])

\(H_c(X,Y) \) is a formal group over \(A \)

It is not particularly difficult to calculate \(h(X) \) from \(u \). One readily finds the recursion relations

\[
\begin{align*}
 b_1 &= \frac{c_1}{\pi^1} \\
 b_2 &= \frac{b_1 c_2^1}{\pi^2} + \frac{c_2}{\pi^2} \\
 b_3 &= \frac{b_2 c_3^1}{\pi^3} + \frac{b_1 c_3}{\pi^3} + \frac{c_3}{\pi^3} \\
 &\quad \ldots \ldots
\end{align*}
\]

This looks rather like formula's (8) of [4]. And in fact it is now not difficult to show (reverse the arguments of [4], appendix) that \(h_c(X) \) satisfies and is determined by

(2.1.6) \[h_c(X) = X + \sum_{i=1}^{\infty} \frac{c_i}{\pi^i} h_c^i(X^i) \]

Practically the same arguments as those of [4] §1 now prove (2.1.4)

2.2. More dimensional Honda formal groups.

Now let the \(\mathbf{c} \) be \(n \times n \) matrices, let \(X = (X_1, \ldots, X_n) \),
\(X^i = (X_1^i, \ldots, X_n^i) \), and let \(h_c(X) \) be the \(n \)-vector of formal power series in \(X \) determined by (2.1.6). Define the \(n \)-dimensional formal group \(H_c \) by \(H_c(X,Y) = h_c^{-1}(h_c(X) + h_c(Y)) \). Then (2.1.4) also holds for these more dimensional formal groups.

Honda also considers a stronger condition on \(A \).

(2.2.1) condition (2.1.1) is satisfied with \(q = n \) and the valuation of \(A \) is unramified.
He proves under this condition.

2.2.2. Theorem (Honda [7]).

If A satisfies (2.2.1) then every formal group over A is isomorphic to an H_c.

2.3. Formal Groups over Rings of Witt Vectors.

Let T_i, S_i be $n \times n$ matrices $T_i = ((T_{i,j}^i)_j)_i$, $S_i = ((S_{i,j}^i)_j)_i$ $i, j = 1, \ldots, n$, in indeterminates $(T_{i,j}^i)_j$, $(S_{i,j}^i)_j$. Let $Z_p[T,S]$ be the ring of polynomials over Z_p in these indeterminates.

We define two n-vectors of power series in $X = (X_1, \ldots, X_n)$.

(2.3.1) $f_T(X) = X + \sum_{i=1}^{\infty} \frac{T_i}{i} f_T^i(X^p)$, $f_{T,S}(X) = X + \sum_{i=1}^{\infty} \frac{S_i}{i} x^p$ + $\sum_{i=0}^{\infty} \frac{T_i}{i} f_{T,S}^i(X^p)$

where $X^p = (X_1^p, \ldots, X_n^p)$ and f_T^i and $f_{T,S}^i$ are obtained from f_T and $f_{T,S}$ by replacing the parameters $(T_{i,j}^i)_j$ and $(S_{i,j}^i)_j$ by their p-th powers. Define

(2.3.2) $F_T(X,Y) = f_T^{-1}(f_T(X) + f_T(Y))$,

$F_{T,S}(X,Y) = f_{T,S}^{-1}(f_{T,S}(X) + f_{T,S}(Y))$

Then we have: F_T and $F_{T,S}$ are strictly isomorphic formal groups over $Z_p[T,S]$. (Cf. [4]). Let A be a commutative Z_p-algebra; let F_t, $F_{t,s}$ be the formal groups over A obtained from F_T and $F_{T,S}$ by substituting elements $(t_{i,j}^i)_j$ and $(s_{i,j}^i)_j$ for $(T_{i,j}^i)_j$ and $(S_{i,j}^i)_j$.

We know, that every formal group over A is strictly isomorphic to an F_t. Now let A be also an integral domain. An n-dimensional formal group over A will be called p-typical if its logarithm g looks like

$g(X) = X + \sum_{i=1}^{\infty} M_i x^p$ where the M_i are $n \times n$ matrices. One also has

(cf. [4]): every p-typical formal group over A is equal to some F_t.
Given the sequences of matrices t, s let t' be such that $F_{t'} = F_{t,s}$. The formal groups F_t and F_t, are strictly isomorphic.

Using all this one gets:

(2.3.3) let R be a system of representants of A/pA in the \mathbb{Z}_p-algebra A. Then for every n dimensional formal group G over A there exists a sequence of matrices $t = (t_1, t_2, \ldots, (t_i)) \in R$ such that G is strictly isomorphic to F_t. (If A is of characteristic zero there exists precisely one such sequence of matrices).

Now let k be a field of characteristic p (or more generally an integral domain of characteristic p). Let $A = W(k)$, and for $\alpha \in k$ let $[\alpha]$ denote the Witt vector $[\alpha] = (\alpha, 0, 0, \ldots)$. Let σ be the Frobenius endomorphism of $W(k)$. Let R be the system of representants $R = \{(\alpha)| \alpha \in k\}$ of $A/pA = k$ in A.

The ring A satisfies condition (2.2.1). Also if $t \in R$ then $t^\sigma = t^p$.

This gives:

(2.3.4) if $(t_i) \in R$ for all $i = 1, 2, \ldots; j, = 1, \ldots, n$ then

$$H_t(X, Y) = F_t(X, Y)$$

and this combined with (2.3.3) gives a proof of theorem (2.2.2) for rings $A = W(k)$

(2.3.5) Remark.

The result derived above on the one hand extents (2.2.2) a bit and on the other hand does not cover all of (2.2.2). This last fact can be repaired to a large extent as follows. Let t, s be two series of matrices in $W(k)$; let $t'' = (t''_1, t''_2, \ldots)$ be defined by

$$(p + t''_1W + t''_2W^2 + \ldots) = (1 + s_1W + s_2W^2 + \ldots)(p + t_1W + t_2W^2 + \ldots)$$

The formal groups H_t'' and H_t are then strictly isomorphic (Honda [7]). Now let A be a subring of $W(k)$ which is invariant under σ and contains a full set of representatives of $k = W(k)/pW(k)$, then every Honda formal group over $W(k)$ is strictly isomorphic (over $W(k)$) to one defined over A. Thus we also get a proof of (2.2.2) for such subrings of rings $W(k)$.
3. A FORMULA.

As in (2.3) let the n-vectors of power series \(f_T(X) \) and \(f_{T,S}(X) \) in \(X = (x_1, \ldots, x_n) \) be defined by

\[
(3.1) \quad f_T(X) = X + \sum_{i=1}^{\infty} \sum_{p} \frac{T_i}{p} f_T^{(i)}(X^p)^i,
\]

\[
f_{T,S}(X) = X + \sum_{i=1}^{\infty} S_i x^p + \sum_{i=1}^{\infty} \frac{T_i}{p} f_{T,S}(X^p)^i.
\]

\[
(3.2) \quad f_T(X) = \sum_{i=0}^{\infty} A_i^*(T) x^p_i,
\]

\[
f_{T,S}(X) = \sum_{i=0}^{\infty} A_i(T,S) x^p_i.
\]

where the \(A_i^*(T) \) and \(A_i(T,S) \) are \(n \times n \) matrices, \(A_0^*(T) = A_0(T,S) = I \),

and \(x^p_i \) is the columnvector consisting of the \(x^p_j \), \(j = 1, \ldots, n \)

Then we have (cf. [4] appendix)

\[
(3.3) \quad A_m^*(T) = \sum_{i=1}^{m} A_{m-i}^*(T) \frac{T_i}{i}
\]

\[
(3.4) \quad A_m(T,S) = A_m^*(T) + \sum_{i=1}^{m} A_{m-i}^*(T) S_i
\]

where \(T_0^i = T_i \) are \(r \) (resp. \(S_i \)) is the \(n \times n \) matrix (\(((T_i^r)_j^p) \))

(resp. (\(((S_i)_j^p) \)).

We define

\[
(3.5) \quad Z_{i,j}(T,S) = \frac{T_i S(j)-S_i T(i)}{p} \quad \text{and} \quad Z_{i,j}^r(T,S) = \frac{T(i+r)-S(i+r)}{T_0^i} Z_{i,j}^r(T,S)
\]

Then we have

3.6. Proposition.

\[
A_m(T,S) = \sum_{i=1}^{m} A_{m-i}(T,S) \frac{T_i}{i} \quad + \quad \sum_{i,j=1,i+j=m} A_{m-i-j}(T) Z_{i,j}^r(T,S) + S_m
\]
Proof. Using (3.3) and (3.4) one finds

\[A_m(T,S) = A_*^m(T) + \sum_{i=1}^{m} A_*^{m-i}(T)S^i \]

\[= \sum_{i=1}^{m-1} \frac{T_{i}^{(m-i)}}{p} + \frac{T_m}{p} + \sum_{i=1}^{m-1} \sum_{j=1}^{m-i} \frac{T_{i}^{(m-i-j)}}{p} S_{i}^{j} + S_m \]

\[= \sum_{i=1}^{m-1} A_{m-i}(T,S) \frac{T_{i}^{(m-i)}}{p} - \sum_{i=1}^{m-1} \sum_{j=1}^{m-i} A_{m-i-j}(T) S_{i}^{j} \frac{T_{i}^{(m-i-j)}}{p} \]

\[+ \sum_{i=1}^{m-1} \sum_{j=1}^{m-i} A_{m-i-j}(T) \frac{T_{i}^{(m-i-j)}}{p} S_{i}^{j} + \frac{T_m}{p} + S_m \]

\[= \sum_{i=1}^{m-1} A_{m-i}(T,S) \frac{T_{i}^{(m-i)}}{p} + \sum_{i,j \geq 1, i+j \leq m} A_{m-i-j}(T) \frac{T_{i}^{(m-i-j)}}{p} + S_m \]

\[= \sum_{i=1}^{m} \frac{T_{i}^{(m-i)}}{p} + \sum_{i,j \geq 1, i+j \leq m} A_{m-i-j}(T) \frac{T_{i}^{(m-i-j)}}{p} + S_m \]

\[\text{4. FORMAL GROUPS OVER } Z(p), Z_p, \text{ and } Z. \]

\[\text{4.1. } p\text{-Typical Groups.} \]

Let A be a Z-algebra. A more dimensional formal group G over A is called p-typical if it is of the form G = F_t for some sequence of matrices \(t = (t_1, t_2, \ldots) \) with coefficients in A. This agrees in the one dimensional case with the definition used in [4] and elsewhere. Every formal group over a Z(\(p \))-algebra is isomorphic to a p-typical one. Simply because the universal formal group of [5] is isomorphic (over Z(\(p \))[T,S]) to F_t.

Let, for the moment, A be a characteristic zero Z(\(p \)) integral domain. Let G be a formal group over A with logarithm g. Replacing the coefficients of all monomials \(x^s = x_1^s, \ldots, x_n^s \) with zero for all s which are not of the form (0, ..., 0, \(p \), 0, ..., 0) gives a vector of power series f which is the logarithm of a formal group F over A which is isomorphic (over A) to G.
As in the one dimensional case cf [2] this isomorphism can also be described in terms of the formal group G.

Let $c(X), c'(X)$ be n-vectors of power series in $X = (X_1, \ldots, X_n)$ with coefficients in A without constant terms. Let G be an n-dimensional formal group over A. One defines

\[(4.1.1) \quad (c + c')(X) = G(c(X), c'(X))\]

and for each $i = 1, \ldots, n$ and $m \in \mathbb{N}$ we define operators $V_m(i), F_m(i)$ as

\[(4.1.2) \quad (V_m(i)c)(X) = c(0, \ldots, x_i^m, 0, \ldots, 0)\]

\[(4.1.3) \quad (F_m(i)c)(X) = c(0, \ldots, x_i^{1/m}, 0, \ldots, 0) + c(0, \ldots, 0, x_i^{2/m}, 0, \ldots, 0) + \cdots\]

Now let $c^o(X)$ be the n-vector of power series $c^o(X) = (X_1, \ldots, X_n)$. Define

\[(4.1.4) \quad c = \sum_{i=1,2,\ldots,n} \sum_{m=1}^{U(m)} \frac{V_m(i)c^o}{(m,p)=1}\]

Then $c(X)$ is the isomorphism between G and the p-typical formal group F. This also works over \mathbb{Z}_p-algebras A which are not an integral domain.

4.2. Isomorphisms of n-typical Groups.

Below we shall need the following isomorphism result of [4].

4.2.1. Proposition.

Let A be an integral domain, F_t the formal group obtained from F_T by substituting (t_i) for (T_i), $(t_i) \in A$. Let G be another p-typical formal group over A. Then G is strictly isomorphic to F_t if and only if there are $n \times n$ matrices s_i, $i = 1, \ldots, n$ with coefficients in A such that $G(X,Y) = F_{t,s}(X,Y)$, where $F_{t,s}$ is the formal group obtained
from $F_{T,S}$ by substituting $(t_i)_t$ and $(s_i)_t$ for $(T_i)_t$ and $(S_i)_t$.

4.2.2. Remarks.

1. For a proof cf [4] or (better) [5].

2. The most important step of the proof of (4.2.1) is to show that $F_{T,S}$ and F_T are isomorphic over $Z_p(T,S)$ (or $Z(T,S)$). Another proof of this rests on the following lemma.

Lemma. In the expansion of $(X + uX^p)^{i+s}$ there occur no other p-power powers of X then X^p and X^{p^i}. (N.B. this is not true if there occur more than two terms inside the brackets). Let $f_{T,S}(X)$ and $f_T(X)$ be the logarithms of $F_{T,S}$ and F_T. We now indicate in the one-dimensional case how to obtain $f_{T,S}(X)$ from $f_T(X)$ by successive substitutions. First substitute $X + S_1X^p$ for X and render the resulting power series p-typical; the resulting coefficients are (if $f_T(X) = \sum_{i=1}^{\infty} a_iX^{p_i}$)

$$1, a_1 + S_1, a_2 + a_1^pS_1, a_3 + a_2^pS_1, a_4 + a_3^pS_1, a_5 + a_4^pS_1, \ldots$$

Now substitute $X + S_2X^{p^2}$ and render the resulting power series p-typical again. We obtain

$$1, a_1 + S_1, a_2 + a_1^pS_1 + S_2, a_3 + a_2^pS_1 + a_1^pS_2, a_4 + a_3^pS_1 + a_2^pS_2 + a_1^pS_3, \ldots$$

Now substitute $X - S_1^pX^{p^3}$ (assuming p is odd) and render p-typical again. We obtain

$$1, a_1 + S_1, a_2 + a_1^pS_1 + S_2, a_3 + a_2^pS_1 + a_1^pS_2, a_4 + a_3^pS_1 + a_2^pS_2 - S_1^pS_3, \ldots$$

Now substitute $X + S_3X^{p^3}$ and render p-typical. We find

$$1, a_1 + S_1, a_2 + a_1^pS_1 + S_2, a_3 + a_2^pS_1 + a_1^pS_2 + S_3, a_4 + a_3^pS_1 + a_2^pS_2 + a_1^pS_3 + S_1^pS_3 - S_1^pS_2, \ldots$$
In two steps one now gets rid of \(S_1 S_3^{P^R} \) and \(- S_1 S_1^{P^R} S_2^{P^2} \) in the coefficient of \(X^{P^R} \), and then \(S_4 \) is introduced, continuing in this way we "finally" get \(r_{T_1 S}(X) \).

The rest of the proof of (4.2.1) goes as follows. Let \(G \) be isomorphic to \(F_{t,s} \), suppose we have already found \(s_1, \ldots, s_r \) such that \(G \) and \(F_{t,s} \) coincide \(\text{mod deg } p^{r+1} \), then both being \(p \)-typical they coincide \(\text{mod } p^{r+1} \).

They are also isomorphic (because \(F_t \) and \(F_{t,s} \) are isomorphic). The isomorphism must look like \(X + a X^{P^{r+1}} \) \(\text{mod degree } p^{r+1} + 1 \), a \(n \times n \) matrix over \(A \). Choosing \(s_{n+1} = a \) we see that

\[G \equiv F_{t,s} \mod \text{degree } p^{r+1} + 1. \]

From now on in section 4 we shall consider only one dimensional formal groups over \(Z, Z(p), Z_p \) (and other rings \(A \) for which \(a^p \equiv a \mod p \)).

4.3. Proposition.

Let \(A \) be a characteristic zero integral domain in which \(p \equiv a \mod p \) holds. The one dimensional \(p \)-typical formal groups \(F_t \) and \(F_{t,s} \) are then strictly isomorphic if and only if \(t_i \equiv t_i' \mod p \) \(i = 1, 2, \ldots \)

Proof. Let \(f_t \) and \(f_{t,s} \) be the logarithms of \(F_t \) and \(F_{t,s} \). We write

\[f_t(X) = \sum_{i=0}^{\infty} a_i X^{p^i} \quad f_{t,s}(X) = \sum_{i=0}^{\infty} a_i X^{p^i} \]

First assume that \(F_t \) and \(F_{t,s} \) are strictly isomorphic. Then there are \(s_1, s_2, \ldots, s_r \in A \) such that \(f_{t,s}(X) = f_{t,s}(X) \). Let \(z_{ij}^{(m)} = Z_{ij}^{(m)}(t,s) \) (cf. (3.5)). Using (3.6) we find

\[a_m = \sum_{i=1}^{m-1} a_{m-i} \frac{t_i^{P}}{p} + \sum_{i,j \geq 1, i+j \leq m} a_{m-i-j} z_{ij}^{(m-i-j)} \frac{t_m}{p} + s_m \]

and on the other hand (cf. (3.3)).

\[a_m = \sum_{i=1}^{m-1} a_{m-i} \frac{t_i}{p} + \frac{t_m}{p} \]
Taking $m = 1$ gives $t_i \equiv t_i' \mod p$. Now because $a^p \equiv a \mod p$ we have

$\nu z_{i,j} \equiv 0 \mod p$ ($\nu z_{i,j} = t_i s_i^{j} - s_i t_i^{j}$) and $\nu z_{i,j} \equiv t_i s_i^{j} - s_i t_i^{j} \equiv 0 \mod p^{i+1}$. It follows that $a_{m-i-j}^{(m-i-j)} \equiv 0 \mod 1$ for all i, j.

Now suppose $t_i \equiv t_i'$ for $i = 1, \ldots, m-1$, then

$t_i^{m-i} \equiv t_i'^{m-i} \mod p^{m-i+1}$; using this and (4.3.3) and (4.3.2) we find that $t_m \equiv t_m' \mod p$.

Now suppose $t_i \equiv t_i' \mod p$ for all $i = 1, 2, \ldots$ To prove F_t and $F_{t'}$ are isomorphic we must show that we can find $s_1, s_2, \ldots \in A$ such that

$f_{t'} = f_{t,s}$. Take $s_1 = \frac{t_1'-t_1}{p}$. Suppose we have already found s_1, \ldots, s_{m-1}. The element s_m is then determined by (4.3.2) and we must show that it is in A. This follows from $a_{m-i-j}^{(m-i-j)} \equiv 0 \mod 1$ and $p^{-1}a_{m-i}(t_i^{m-i} - t_i'^{m-i}) \equiv 0 \mod 1, i = 1, \ldots, m$.

4.4. Corollary.

The formal groups F_t and $F_{t'}$, over A are isomorphic if and only if $t_i \equiv t_i' \mod p$.

Proof. We need only prove that if F_t and $F_{t'}$ are isomorphic then $t_i \equiv t_i'$.

Let $\phi(X) = uX + u_{2,0}X^2 + \ldots$, u a unit of A, be the isomorphism. $\phi(X)$ can be written as $\phi = \psi \circ \chi$ where $\chi(X) = uX$ and ψ is a strict isomorphism between $G(X,Y) = u^{-1}F_t(uX, uY)$ and $F_{t'}(X,Y)$. The logarithm of G is $g(X) = u^{-1}f_t(uX)$. It follows that $g(X) = f_{t'}(X)$ where $t_i'^{p^{i-1}} - t_i^{p^{i-1}} \equiv 1 \mod p$, we find $t_i'^{p^{i-1}} \equiv t_i \mod p$. Also $t_i'^{p^{i-1}} \equiv t_i' \mod p$ according to (4.3). Therefore $t_i \equiv t_i' \mod p$.

4.5. Corollary.

Two p-typical formal groups over $\mathbb{Z}/(p)$ are (strictly) isomorphic if and only if they are identical.
Proof. Let F, G be two p-typical formal groups over $\mathbb{Z}/(p)$. Let $\hat{\mathcal{P}}$ be a formal group over \mathbb{Z}_p which lifts \mathcal{P}. Let ϕ be an isomorphism between F, G and let $\hat{\mathcal{P}}$ be any power series over \mathbb{Z}_p without constant term which lifts \mathcal{P}. Define $\hat{\mathcal{P}}(X,Y) = \hat{\phi}^{-1}F(\hat{\phi}X, \hat{\phi}Y)$. Now render $\hat{\mathcal{P}}$ p-typical using (4.1.4). Let \mathcal{G} be the result. Then \mathcal{G} also reduces to G (because G is already p-typical).

$$
\begin{array}{c}
\mathcal{F} \\
\downarrow \phi \\
\mathcal{G} \\
\downarrow \phi \\
F \\
\phi \\
\end{array}
$$

Let $\hat{\mathcal{P}} = F_1, \mathcal{G} = F_1$. Then $t_i = t_i^1$. It follows that $F = G$. Cf. lemma below. (N.B. ϕ need not be the identity).

q.e.d.

Let A be a characteristic zero \mathbb{Z}_p-integral domain. The reductions mod p of F_1 and F_1, are identical if $t_i \equiv t_i^1$, $i = 1, 2, \ldots$

Proof. The coefficients of $F_1(X, Y)$ are polynomials in T_1, T_2, \ldots; and

$$F(T_1, \ldots, T_r, 0, 0, \ldots)(X, Y)$$

and $F_1(X, Y)$ differ by

$$\frac{T_1}{p}(X + Y)^p - X^p - Y^p \mod p^p + 1.$$

Remark. This lemma does not hold for the groups $\mathbb{H}_1(X, Y)$ discussed in section 2.

4.7. Corollary (Cartier [1], Hill [6])

Two formal groups over $\mathbb{Z}/(p)$ or \mathbb{Z}_p (or any ring in between) are isomorphic if their reductions mod p are isomorphic.

Proof. Let the reduction F^* and G^* of F and G be isomorphic. Let $F' = c_p^{-1}(c_p(X), c_p(Y))$, where c_p is as in (4.1.4). Then F' is p-typical. The reduction of c_p mod p is c_p. (This follows from (4.1.4)).
Let \(\phi(X) \) be the isomorphism between \(G^* \) and \(F^* \), let \(\tilde{\phi}(X) = uX + u_2X^2 + \ldots \), \(u \) a unit be any lift of \(\phi(X) \). Let \(H(X,Y) = \tilde{\phi}^{-1}G(\tilde{\phi}(X), \tilde{\phi}(Y)) \). Then \(H \) reduces to \(F^* \). It follows that the reduction of \(c_H \) is \(c_F \). Let \(H'(X,Y) = c_H^{-1}H(h(X), h(Y)) \). The formal groups \(H' \) and \(F' \) are both p-typical and have the same reduction. It follows that they are isomorphic ((4.6), (4.3)). And as \(\phi \), \(c_H \) and \(c_F \) are isomorphisms, \(F \) and \(G \) are also isomorphic.

4.8. Remark. If \(F^* \) and \(G^* \) are strictly isomorphic then \(F \) and \(G \) are strictly isomorphic. (Take \(\phi(X) = X + u_2X^2 + \ldots \)).

4.9. Corollary.

Two formal groups over \(\mathbb{Z} \) are isomorphic if they are isomorphic mod \(p \) for all primes \(p \).

5. TWO COUNTEREXAMPLES.

The results of (4.3) - (4.9) do not seem to be generalizable. More precisely: let \(k \) be a field of characteristic \(p \) which is not equal to \(\mathbb{Z}/(p) \). Then there are one dimensional \(p \)-typical formal groups over \(W(k) \) with the same reduction which are not isomorphic. Cf. (5.1) below. The corollary (4.5) is also false over \(k \) (also for strict isomorphisms).

Finally two more dimensional formal groups over \(Z_{(p)} \) or \(Z_p \) with the same reductions need not be isomorphic. Cf. (5.2).

5.1. Example.

Let \(F_9 = k \), the field of 9 elements; \(W(k) = \mathbb{Z}_3(1) \), where \(i^2 = -1 \). Let \(t_1 = 0, t_2 = i, t_3 = 0, t_4 = 0, \ldots, t_n = 0, \ldots; \)

\[t'_1 = 3i, t'_2 = i, t'_3 = 0, \ldots, t'_n = 0, \ldots \]
Consider the formal groups F_t and $F_{t'}$ over $Z_3(i)$.

(i) The formal groups F_t and $F_{t'}$ are not strictly isomorphic over $Z_3(i)$. Indeed, if they were there would be elements $s_1, s_2, \ldots \in Z_3(i)$ such that $F_{t'} = F_t, s$ or, equivalently, $f_{t'} = f_{t,s}$. Then we must have $s_1 = i$. Looking at the coefficients of x^{27} we see that there must be an $s_2, s_3 \in Z_3(i)$ such that (cf. (4.3)).

\[
\frac{t_1^i}{p} + a_1 \frac{(t_2')^p}{p} + a_2 \frac{(t_1')^p}{p} = \frac{t_3^i}{p} + a_1 \frac{t_2^p}{p} + a_2 \frac{t_1^p}{p} + \frac{t_1 t_2^p - s_1 t_1^p}{p} + \frac{t_1 s_2^p - s_1 t_1^p}{p} + \frac{t_2 s_1^p - s_1 t_2^p}{p} + s_3
\]

where $p = 3, f_{t'}(X) = \sum_{i=0}^{\infty} a_i X^i, a_0 = 1$. Because $t_1 = 0$ and $t_1' \equiv t_1 \mod p$

\[t_2 s_1^p - s_1 t_2^p \equiv 0 \mod p\] which is not the case.

(ii) The formal groups F_t and $F_{t'}$ are not isomorphic over $Z_3(i)$.

Every isomorphism $\phi(X) = uX + u_2 x^2 + \ldots, u$ a unit of $Z_3(i)$ can be decomposed as $\phi = \psi \circ \chi$ where $\chi(X) = uX$ and $\psi(X) = X + \ldots$ is a strict isomorphism. Let $G(X,Y) = \chi^{-1} F(xX, XY)$.

The logarithm of G is $f_t''(X)$, where $t''_1 = 0, t''_2 = u_{p^2-1} t_2, t''_3 = 0, \ldots, t''_n = 0, \ldots$. The groups $G(X,Y)$ are strictly isomorphic. There must therefore be $s_1, s_2, \ldots \in Z_3(i)$ such that $f_{t''_1}, s(X) = f_{t'}(X)$. This gives $s_1 = i$. As above (5.1.1) must hold (with t_1 replaced by t''_1). Now $u_{p^2-1} \equiv 1 \mod p$ because the residue field has p^2 elements. It follows that $t''_2 \equiv t_2 \mod p$, and therefore we must have $t''_2 s_1^p - s_1 t''_2 \equiv 0 \mod p$, which is not the case because $t''_2 \equiv i \mod p$ and $s_1 = i$.
5.2. Example.

We work over Z_p or $Z(p)$. Let the matrices t_1, t'_1 be given by

$$t_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad t_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad t_3 = 0, \ldots, t_n = 0, \ldots$$

$$t'_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad t'_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad t'_3 = 0, \ldots, t'_n = 0, \ldots$$

We consider the 2-dimensional formal groups F_t and F'_t over $Z(p)$ or Z_p.

(i) The formal groups F_t and F'_t are not strictly isomorphic over Z_p. If they were strictly isomorphic there must be matrices s_1, s_2, \ldots such that $F_{t'_1} = F_{t_1} s_i$. We find $s_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and comparing the coefficients of X^{p^2} in $f_{t'_1}(X)$ and $f_{t_1} s_i(X)$ we see that

$$p^{-2} \begin{pmatrix} 1 & p \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + s_2 + p^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$$

$$p^{-2} \begin{pmatrix} 1 & p \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & p \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

for a certain s_2 with coefficients in Z_p. Contradiction.

(ii) The formal groups F_t and F'_t are not isomorphic over Z_p.

Every isomorphism is of the form $uX + \ldots$ where u is an invertible 2 x 2 matrix. Decompose ϕ as $\psi; \chi$ where $\chi(X) = uX$ and ψ is a strict isomorphism. Let $G(X,Y) = u^{-1} F_t (uX,uY)$. The logarithm of G is then $g(X) = u^{-1} f_t (uX)$. G is not a p-typical group in general. Rendering G p-typical gives a formal group G' with logarithm

$$g'(X) = X + u^{-1} a_1^* u(1) X^p + u^{-1} a_2^* u(2) X^{p^2} + \ldots$$

if $f_t(X) = X + a_1^* X^p + a_2^* X^{p^2} + \ldots$

where $u(i)$ is the matrix $u(i) = \begin{pmatrix} i & 1 \\ j & k \end{pmatrix}$. The formal groups G' and F'_t, are strictly isomorphic. This means that we must have

$$u^{-1} a_1 u(i) \equiv a_1 \mod 1$$

if $f_{t'_1}(X) = X + a_1^* X^p + a_2^* X^{p^2} + \ldots$. Let $u = \begin{pmatrix} b & c \\ d & e \end{pmatrix}$, because $u(1) \equiv u \mod 1$
we see that we must have

\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & c \\ d & e \end{pmatrix} \equiv \begin{pmatrix} b & c \\ d & e \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mod p
\]

This gives \(c \equiv d \equiv 0 \mod p \). Let \(g'(x) = f''(x) \). We calculate \(t_1'', t_2'' \).

This gives

\[
t_1'' \equiv \det (u) \begin{pmatrix} eb^p & 0 \\ -pd'b^p & 0 \end{pmatrix} \mod p^2 \quad \text{ where } pd' = d
\]

Therefore

\[
t_1'' \equiv \begin{pmatrix} 1+py & 0 \\ yz & 0 \end{pmatrix} \mod p^2 \quad y, z \in \mathbb{Z}_p
\]

\[
t_2'' \equiv \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mod p
\]

There must be matrices \(s_1, s_2 \) such that

\[
t''(1) = \frac{t_1''(1)}{p} = \frac{t_2''}{p}
\]

Because \(t_1'' \equiv t_1' \mod p \) and \(t_2'' \equiv t_2' \mod p \), this implies

\[
(5.2.2) \quad t''s_1'(1) - s_1't_1'(1) \equiv 0 \mod p
\]

Now

\[
s_1 = \begin{pmatrix} 0 & 1 \\ 1-z & 0 \end{pmatrix}, \quad t_1'' \equiv \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mod p
\]

which contradicts \((5.2.2)\)

REFERENCES.

 Séminaire Bourbaki, exposé 359 (Lecture notes in Mathematics 179,
 Springer.)

[4]. Hazewinkel, M., Constructing Formal Groups I: over \(Z(p) \)-algebras.
 Report 7119 and 7119 (appendix) of the Econometric Institute,
 Netherlands School of Economics, Rotterdam.

[5]. Hazewinkel, M., Constructing Formal Groups. II: over \(Z \)-algebras.
 Report 7201 of the Econometric Institute, Netherlands School
 of Economics, Rotterdam.

[6]. Hill, W.L., (1971), Formal Groups and Zeta-Functions of Elliptic

Michiel Hazewinkel
Econometric Institute
Netherlands School of Economics
Burg. Oudlaan 50, Rotterdam.
The Netherlands.